

EA Engineering, Science, and Technology, Inc.

Background Soil Report, Revision 2 Three Kids Mine Lakemoor Ventures LLC

April 2022

Creating Solutions, Building Trust.

April 5, 2022

Project No. 14-01-156

Alan Pineda, PE Professional Engineer Bureau of Industrial Site Cleanup Nevada Division of Environmental Protection 375 E. Warm Springs Rd., Ste. 200 Las Vegas, NV 89119

Attn: Mr. Pineda

Re: Background Soil Report, Revision 2 Three Kids Mine

Dear Mr. Pineda:

Broadbent & Associates, Inc. (Broadbent) is pleased to submit this *Background Soil Report, Revision 2*.

Please do not hesitate to contact us if you should have any questions or require additional information.

Sincerely, BROADBENT & ASSOCIATES, INC.

in ft

Kirk Stowers, Certified Environmental Manager Principal Geologist

JD Dotchin, NDEP cc: James Carlton Parker, NDEP Joe McGinley, McGinley & Associates, Inc. Caitlin Jelle, McGinley & Associates, Inc. Ann Verwiel, ToxStrategies Robert Unger, Lakemoor Ventures LLC Mindy Unger-Wadkins, Lakemoor Ventures LLC Leo Drozdoff, Drozdoff Group, LLC Karen Gastineau, Broadbent & Associates, Inc. Cynthia Cheatwood, EA Engineering John Callan, Bureau of Land Management Elizabeth Moody, Bureau of Land Management Christene Klimek, City of Henderson Sean Robertson, City of Henderson Stephanie Garcia-Vause, City of Henderson Anthony Molloy, City of Henderson

Background Soil Report, Revision 2 Three Kids Mine Henderson, Nevada

JURAT: I, Karen Gastineau, hereby certify that I am responsible for the services in this document and for the preparation of this document. The services described in this document have been provided in a manner consistent with the current standards of the profession and to the best of my knowledge comply with all applicable federal, state and local statutes, regulation and ordinances.

Karen Dastinean

<u>April 5, 2022</u> Date

Karen Gastineau Senior Hydrogeologist Certified Environmental Manager #2468 (4/1/2023) Section 1.1.1 Location – This section indicates that the site includes seven parcels totaling approximately 851 acres under federal administration. It is unclear why the area for the federally-owned land was changed from 952 to 851 acres. The total site area was also changed accordingly. Per the Act, the Three Kids Mine project site consists of approximately 1,262 acres, 948 of which are federally owned. Please explain.

Response: The original Act listed 948 acres of federal land, but this included the 1,400' wide Bureau of Reclamation (BOR) 500kV power corridor. It has since been decided that this area is not needed in open space calculations for Lakemoor and is better kept with BOR. Therefore, the federal acreage for transfer has been reduced to 851 acres. There are other areas with existing easements that will be transferred, but those easements will stay in place and Lakemoor has been coordinating with the entities on development plans to ensure no conflicts will arise.

2. Section 2.2 Sample Analysis – The report indicates that "selected samples were analyzed for select polycyclic aromatic hydrocarbons (PAHs) to evaluate impacts to downwind parcels." Although the analytical results for PAHs are presented in Table 1 and Table A.2, the text does not include any discussion of the analytical results (Table 1) or the comparison of their SQLs to the RSLs (Table A.2). It would be helpful for these items to be discussed in the text, or for a statement to be added to the end of Section 2.2 indicating where they will be discussed.

Response: A discussion of the PAH results for the downwind parcels was not included in the Background Soil Report because these analytical results will be evaluated in a risk assessment. A Screening Level Human Health Risk Assessment will be submitted for the Volcanic Units of Downwind Parcels (Strata 122) in the first half of 2022. The text in Section 2.2 has been revised to note these results will be discussed in forthcoming risk assessments.

3. Section 3.1.2 Exploratory Analyses and Outlier Identification – When describing the exclusion of outliers, it may be better to use a more descriptive phrase such as "eliminated as an outlier" or "not representative of the data set" instead of "thrown out."

Response: The text has been revised to replace "thrown out" with "eliminated from the dataset as an outlier."

4. Section 3.1.2 Exploratory Analyses and Outlier Identification – This section states that "individual metals excluded for River Mountains background samples BG-121-18-01 (anomalous manganese) and BG-121-26-01 (anomalous lead and manganese) were excluded at the request of NDEP in the meeting held on October 13, 2021." The Background Soil Report was submitted to NDEP on December 23, 2021; NDEP provided draft comments on January 26, 2022; and a meeting to discuss draft comments was held on February 9, 2022. Therefore, it seems more likely that the decision to exclude the individual metals for these two samples was made at the February 9th meeting during discussion regarding General Comment #1.

Response: A meeting was held with NDEP on October 13, 2021 to discuss the preliminary assessment of background results and the risk assessment work plan. A discussion of potential outliers was included and discussed in this meeting.

- 5. Section 3.3.3.1 Sedimentary Units of Downwind Parcels versus Muddy Creek Formation This section should indicate that based on the limited number of samples for the downwind parcel, there is some uncertainty about the conclusion of this comparison. In fact, the means and medians are much higher in the downwind parcels for several additional metals.
 - a. Table 5a The results using ANOVA options in ProUCL provide very different conclusions regarding which metals would be considered from different populations. Although it is possible for SAS to provide different results for these comparisons based on the input statistics, the summary of the comparison should mention the limited data (only five samples for sedimentary units of downwind parcels) and that there may be other metals that have different concentrations based on comparison of medians.

Response: We agree that there is some uncertainty about the conclusion of this comparison due to the limited number of samples. We would note that we are not suggesting that the sedimentary units of the downwind parcels are background. However, some text has been added to the section to provide clarification.

 Section 4 Summary and Conclusions – For additional clarity, it would be helpful for the second paragraph in this section to also mention that individual metals were excluded from the calculation of BTVs for two samples (BG-121-18-01 excluded for manganese, and BG-121-26-01 excluded for lead and manganese).

Response: The additional text has been added to Section 4 to detail the individual metals excluded from two samples within the River Mountain volcanic rocks.

7. **Table 3 Background Summary Statistics** – Units are not identified. The footnote indicating "all concentrations reported in milligrams per kilogram" should have been retained.

Response: The units have been added to Table 3.

8. Table A.2 Comparison of Sample Quantitation Limits to Risk-Based Screening Levels

- a. If samples were analyzed for total chromium, it may not be appropriate to compare the corresponding sample quantitation limits to the trivalent chromium RSL of 12,000 mg/kg.
- b. Table A.2 lists an RSL of 180 mg/kg for benzo[g,h,i]perylene, and 1,800 mg/kg for phenanthrene. These PAHs are not listed in the USEPA RSL Summary Table (November 2021). Please add a footnote to Table A.2 with a reference for the listed values.

Response: Table A.2 has been revised to note the surrogate chemicals used in determining RSLs for benzo[g,h,i]perylene and phenanthrene.

TABLE OF CONTENTS

1	Introduction1				
	1.1 Site Location and Geologic Setting				
	1.1.1	Location1			
	1.1.2	Geology and Geomorphology2			
	1.1.3	Geological Units			
	1.1.3	1 Muddy Creek Formation			
	1.1.3	.2 Ore Body			
	1.1.3	.3 River Mountain Bedrock			
	1.1.3	.4 Surficial Deposits in Downwind Parcels			
2	Summa	ry of Background Investigation			
	2.1 Sa	npling Procedures3			
	2.2 Sa	nple Analysis5			
	2.3 Da	ta Validation Summary5			
	2.4 Da	ta Usability6			
	2.4.1	Reports to Risk Assessor6			
	2.4.2	Data Sources			
	2.4.3	Documentation			
	2.4.4	Analytical Methods and Detection Limits			
	2.4.5	Data Review			
 2.4.6 Data Quality Indicators 2.4.6.1 Completeness 2.4.6.2 Comparability 2.4.6.3 Representativeness		Data Quality Indicators			
		1 Completeness			
		2 Comparability			
		.3 Representativeness			
	2.4.6	.4 Precision9			
	2.4.6	.5 Accuracy			
3	Statisti	cal Methods10			
	3.1 Da	ta Preparation10			
	3.1.1	Data Reduction10			
	3.1.2	Exploratory Analyses and Outlier Identification10			
3.2 Descriptive Summary Statistics		scriptive Summary Statistics12			
	3.3 St	itistical Methods13			
	3.3.1	BTV Determination13			
	3.3.2	Computation of BTVs for Metals13			

	3.3.3 0	Comparison of Strata	14
	3.3.3.1	Sedimentary Units of Downwind Parcels versus Muddy Creek Formation	14
	3.3.3.2	Volcanic Units of Downwind Parcels versus River Mountain Background	14
4	Summary	and Conclusions	14
Acro	onyms		16
Refe	erences		17

LIST OF FIGURES

Figure 1	Site Location
Figure 2	Regional Geology
Figure 3a	Detailed Geologic Map
Figure 3b	Detailed Geologic Map Key
Figure 4	Sample Location Map
Figure 5	Locations of Outliers Removed

LIST OF TABLES

Analytical Results
Disposition of Potential Outliers from Normal Q-Q Plots
Background Summary Statistics
Background Threshold Values (BTVs)
Stratum Comparisons – Sedimentary Units of Downwind Parcels Versus Muddy
Creek Formation
Stratum Comparisons – Volcanic Units of Downwind Parcels Versus River
Mountain Background

LIST OF APPENDICES

Appendix A	Summary Statistics for Raw Data and Comparison of Sample Quantitation Limits
Appendix B	Q-Q Plots
Appendix C	Side by Side Box Plots
Appendix D	ProUCL Outputs
Appendix E	Empirical Distribution Functions

1 INTRODUCTION

This Background Soil Report, Revision 1 was prepared by Broadbent & Associates, Inc. (Broadbent) and EA Engineering, Science, and Technology, Inc. PBC (EA) on behalf of Lakemoor Ventures, LLC (Lakemoor) for the Three Kids Mine site (Site) located in Clark County, Nevada, just east of the City of Henderson (Figure 1). The Site is being remediated and reclaimed by Lakemoor in conjunction with residential development plans in cooperation with the City of Henderson, Clark County, the Nevada Division of Environmental Protection (NDEP) Bureau of Industrial Site Cleanup, the U.S. Bureau of Land Management, and the U.S. Bureau of Reclamation. NDEP is the lead agency overseeing the reclamation of the Site.

Broadbent collected background samples according to the approved *Phase II Sampling and Analysis Plan, Revision 2* (SAP) for site characterization dated November 3, 2021 (Broadbent, 2021). This report discusses geological units present at the Site (Section 1.3), summarizes the background soil investigation (Section 2), discusses statistical methods used on the data gathered during the investigation (Section 3), and provides a summary and conclusions (Section 4). The project objectives, purpose, and Site location and geologic setting are discussed below.

Objectives

This Background Soil Report, Revision 1 was prepared to compile and assess Site sample chemical analyses for development of background datasets in native geologic units that have not been directly disturbed by mining and other operations. The background concentrations of metals will be used for: 1) the assessment of remediation completeness (comparison of contaminant concentrations to Site background), 2) the assessment of whether significant airborne deposition of metals may have occurred in downwind, undisturbed portions of the Site, and 3) evaluating the suitability of borrow materials, if needed.

The primary purpose of this background soil study is to obtain a background soil dataset to establish background concentrations for metals at the Site. Additionally, selected samples were analyzed for select polycyclic aromatic hydrocarbons (PAHs) to evaluate impacts to downwind parcels.

1.1 SITE LOCATION AND GEOLOGIC SETTING

1.1.1 Location

The Site is located approximately five miles northeast of central Henderson, Nevada, along East Lake Mead Parkway (State Road 564). A general location map is provided in Figure 1. The property occupies most of Section 35 and parts of Sections 26, 34, and 36 of Township 21S, Range 63E, Mount Diablo Meridian. The approximate center of the Site is at 36°05'00"N latitude and 114°54'50"W longitude (Figure 2). The Site consists of approximately 1,165 acres in 18 parcels. Seven parcels totaling approximately 851 acres are under federal administration. The remaining 314 acres are distributed across 11 parcels, controlled by three different private entities. Access to most of the Site is gained via a locked gate and unpaved road in the northeast corner of the Site. A small portion of the Site is located north of Lake Mead Parkway and can be accessed by foot.

1.1.2 Geology and Geomorphology

The Site is a part of the Basin and Range province in southern Nevada, near the northern end of the River Mountains Range, which trend northwest – southeast. The Site is surrounded on the south, east, and north by volcanic units of the River Mountains and is open west to a basin. Prior to mining activities, the Site overlaid a gently northwest sloping, thin, alluvial plain deposit within the basin separated from the river mountain bedrock by normal faults. Historical maps show the plain to have been dissected by rills and gullies (Zenitech, 2007). The alluvial plain where the mine and mill were constructed sat on units of the sedimentary Muddy Creek Formation. The regional geology around the Site is provided in Figure 2, the Site-specific geology is presented in Figure 3a, and the geologic key is provided in Figure 3b.

1.1.3 Geological Units

Historical data, geological mapping by Bell and Smith (1980), and prior field inspections indicate that the western half of the Site are sedimentary in origin and are expected to contain low natural arsenic and lead relative to the ore unit or volcanic rocks. By comparison, the volcanics of the east and south portions of the Site have previously demonstrated somewhat higher concentrations of arsenic and lead (CH2M Hill, 2008). The ore body remnants, which can be seen in the pits and commingled with sedimentary overburden, are expected to contain the highest concentrations of arsenic, lead, manganese, and other metals, based on historical data and references (Bureau of Mines, 1945; Hunt et al., 1942; Morris, 1954; NBMG, 1942; Pardee, 1920). Areas sampled as part of the background investigation have been stratified according to geologic subunits and substratified according to upwind/downwind position, based on historical weather patterns (Basic Remediation Company, 2007a; ERM, 2005; WRCC 2006a, 2006b, 2007, and 2021). The following sections detail the geologic subunits identified for investigation in the background investigation.

1.1.3.1 Muddy Creek Formation

The Muddy Creek Formation is a late Miocene/early Pliocene basin fill sedimentary deposit of Lacustrine and subaerial origin (Bell and Smith, 1980). Site geologic units include gypsiferous red siltstones, sandstones, mudstones, tuffs, and beds of massive gypsum. Overall thickness of the Muddy Creek at the Site is estimated at greater than 1,000 feet, except where it thins to meet the River Mountains volcanics along the Extension fault (Hunt et al., 1942). During mining, large portions of the Muddy Creek formation overburden were removed and incorporated onsite to construct dams and control erosion or were deposited as waste rock on the surface. Most of this construction occurred on the west side of the mining properties where large boulders of Muddy Creek gypsum are observable (Zenitech, 2007). Geotechnical and Environmental Services, Inc. (GES, 1998) conducted sampling of overburden and native rock and observed that native rock was not acid generating.

1.1.3.2 Ore Body

The ore body mined at the Site is generally described as a manganiferous- or "wad"-rich, tuffaceous, silty sandstone of 10-80 feet in thickness (Hunt et al., 1942; Pardee and Jones, 1920; Johnson and Trengove, 1956; McKelvey et al., 1949). On-site evidence of hydrothermal activity around faults and manganiferous seep deposits along the exposed Lowney fault wall support a transport and silica and manganese replacement theory, with the Muddy Creek Formation being the primary host. However, Bell and Smith (1980) describe the ore body as tuffaceous or pyroclastic in origin. They believe that the ore

body was a separate unit from the Muddy Creek formation, either associated with the River Mountains or independent. Most of the original ore body was mined out in the 1950s making detailed modern study difficult.

1.1.3.3 River Mountain Bedrock

Eleven to twelve million years ago in the mid-Tertiary Period, the River Mountains were formed as part of a strato-volcano complex six miles southeast of the Site (Bell and Smith, 1980). At the location of the subject property, these mountains are composed of lava flows. Bell and Smith (1980) mapped three different units in the locality with the major unit being volcanic lava flows of mainly dacite composition interbedded with epiclastic (local source) sandstones, conglomerates and breccias, and pyroclastic units. The dacite is biotite-, plagioclase-, and hornblende-bearing, and of variable texture. Upper and lower parts of many individual flows are brecciated. Individual flows vary in texture and minor mineral composition. Many flows are vesiculated and some exhibit interbedded breccia, tuff, or agglomerate. The River Mountain volcanics are mainly dacite composition rocks interbedded with epiclastic (local source) sandstones, conglomerates and breccias, and pyroclastic units.

1.1.3.4 Surficial Deposits in Downwind Parcels

The youngest geologic units on the Site are Quaternary surface deposits and soils. These sediments are eroded from and overlie the Muddy Creek Formation as alluvial or pediment deposits up to 20 feet thick. Additional alluvial deposits derived from the River Mountain volcanics were deposited within drainages of the River Mountains. Site soils are derived from weathering of primary bedrock units or secondary alluvial deposits. All Site soils tend to be gypsiferous with clasts of dacite, basalt, and tuff (Zenitech, 2007). Gypsum content is locally highly variable. Winds predominantly blow from the south and west (Zenitech, 2007) and the north (stratum 112) and eastern (stratum 122) parcels of the Site are expected to be the affected by windblown chemicals migrating from Site (Figure 4).

2 SUMMARY OF BACKGROUND INVESTIGATION

2.1 SAMPLING PROCEDURES

A detailed description of the sampling and analysis procedures for the background investigation is provided in the Phase II SAP (Broadbent, 2021). The sampling design used for establishing Site background concentrations for metals is referred to as Element 1. As metals are the primary site-related chemical (SRC) at the Site, reliable background ranges for metals are essential to establishing remediation benchmarks for achieving successful restoration of the Site. As mentioned in Section 1.1, background concentrations of metals will be used for:

- 1. The assessment of remediation completeness, and
- 2. The assessment of whether significant airborne deposition of metals may have occurred in downwind, undisturbed portions of the Site.
- 3. Only if needed, to assess import borrow materials.

The following strata were sampled for Element 1 and are also depicted in Figure 4.

Strata				
1.1 Sedimentary Rocks of Muddy Creek Formation and Alluvia				
1.1.1 Sedimentary Rocks in Background Areas				
1.1.2 Sedimentary Rocks in Downwind Areas				
1.2 Volcanic Rocks of Powerline Road (River Mountains)				
1.2.1 Volcanic Rocks in Background Areas				
1.2.2 Volcanic Rocks in Downwind Areas				
1.3 Ore-bearing Rocks (Manganiferous unit)				

Samples collected for Element 1 were discrete, independent samples from representative areas. Sample points were the center of randomly selected 20- by 20-foot (ft) sampling units, within a systematically identified 100- by 100-ft numbered grid. Samples of undisturbed soils, sediments, or rock were collected from the near surface (0-1 ft below ground surface, or bgs). Sampling and sample handling procedures were consistent with the standard operating procedures (SOPs) provided in the Phase II SAP (Broadbent, 2021). The following sections detail information specific to each stratum:

Stratum 1.1.1 Sedimentary Unit Background (Muddy Creek Formation)

Sedimentary unit background concentrations will be the basis for comparison to post-remediation soils in most portions of the disturbed area, since the majority of native soils beneath the mill and tailings consist of consolidated Muddy Creek sediments or related alluvial deposits. In addition, soil from this unit will also be used as "clean cover" during future Site development. A total of 23 samples were collected within the Muddy Creek Formation (stratum 111).

Stratum 1.1.2 Sedimentary Unit (Muddy Creek Formation) Downwind of Mill Site

These soil samples were collected for the evaluation of possible windblown deposits and/or tailings in Parcels 6 and 8 downwind of the impacted areas. A total of 5 samples were collected from this area (stratum 112).

Stratum 1.2.1 River Mountain Background

Outcrops of volcanic rocks may be encountered after remediation in some portions of the disturbed area. This unit has not been impacted by Site activities and may be considered an additional background dataset depending upon future Site development. In addition, soil from this unit will also be used as "clean cover" during future Site development. A total of 27 samples were collected for this unit (stratum 121).

Stratum 1.2.2 Volcanic Unit Downwind of Mill Site

Volcanic rock and soil samples were collected for the assessment of possible windblown metal deposits in Parcels 7, 8, and 17. Approximately one-fourth of the volcanic rocks at the Site are in the downwind area. A total of 9 samples were collected within this stratum (stratum 122).

Stratum 1.3 Ore-Bearing Unit

Ore-bearing materials can be found in overburden, mill Site soils, and in associated drainages, in tailings, and perhaps in downwind areas and other parts of the Site. Samples were collected from the orebearing unit to provide an indication of SRCs. A total of 13 samples were collected from the Ore Bearing Unit (stratum 13).

2.2 SAMPLE ANALYSIS

As discussed in the Phase II SAP (Broadbent, 2021), the following types of analyses were conducted on samples collected for this background report and were analyzed by Pace-National:

Stratum and Matrix	Analytical Scheme	Number of Samples Collected	Number of Samples in Analysis
1.1.1 Muddy Creek Formation	M1, M3	23	18
1.1.2 Sedimentary Unit of Downwind Parcels 6 & 8	M1, S1	5	5
1.2.1 River Mountain Background	M1, M3	27	22
1.2.2 Volcanic Units of Downwind Parcels 7, 8 & 17	M1, M3, S1	9	9
1.3 Ore Body Background Rocks	M1	13	12

- Analytical Scheme **M1** U.S. Environmental Protection Agency (EPA) Method 6020A, Analytes: Antimony, arsenic, cadmium, chromium, copper, lead, manganese, selenium, and zinc.
- Analytical Scheme **S1** EPA Method 8270C/E selected ion monitoring (SIM), Analytes: PAHs.

Although samples were broken out by geologic subunit in the Phase II SAP, for the purposes of statistical analyses presented in this report they are grouped simply by the major geologic unit for two reasons: 1) variation within geologic subunits is expected due to depositional environment, and 2) for practical purposes, it would not be clear which background threshold values (BTVs) to use for comparison to post-remediation samples if calculated by geologic subunit.

In addition, the following types of analyses were conducted on composite samples for some of the strata collected for the background study during 2021 per the Phase II SAP (Broadbent, 2021) identified as analytical scheme **M3**, and analyzed by Pace Wyoming:

- Standard Test Method for Column Percolation Extraction of Mine Rock by the Meteoric Water Mobility Procedure (MWMP) by the American Society for Testing and Materials (ASTM) Method E2242-13 (ASTM, 2013).
- Total metals in MWMP extracts by EPA Methods 200.7, 200.8, and 245.1 (EPA, 1994a,b,c).
- Anions in MWMP extracts by ion chromatography by EPA Method 300.0 (EPA, 1993).

Table 1 presents the analytical results for the metals and SVOCs by stratum. MWMP results will be presented in the forthcoming *Leaching Analysis Report*. Additionally, a discussion of PAH analytical results for the downwind areas will be evaluated in forthcoming risk assessments.

2.3 DATA VALIDATION SUMMARY

Two levels of data validation were conducted by CDFriday, Inc. (2021). Approval of the *Data Validation Summary Report, Reporting of Three Kids Mine Background Study Data* (DVSR) is pending based on responses to NDEP comments. Stage 4 validation was conducted on at least 10 percent of all samples, and the remaining 90 percent were validated to Stage 2B, as specified in the Phase II SAP. Stage 4

verifies and validates the laboratory analytical data through completeness checks of sample receipt conditions, review of sample and laboratory instrument quality control (QC) results, recalculation checks, and review of laboratory instrument outputs (NDEP, 2018). Stage 2B verifies and validates the laboratory analytical data through completeness and compliance checks of sample receipt conditions and an evaluation of QC summary results (both sample-related and laboratory instrument related) (NDEP, 2018). Based on data validation and review, data qualifiers were noted to signify whether the data were acceptable, acceptable with qualification, or rejected. In addition, for every data validation qualifier, a secondary comment code was entered to indicate the primary reason for qualification. The DVSR provides the definitions for the data validation qualifiers and comment codes used in the validation process. Validation qualifiers and definitions are based on those used by EPA in current data validation guidelines (EPA, 2020a,b).

Several sample results were qualified as estimated based on the following issues (corresponding to Tables 4 through 8 in the DVSR:

- Laboratory blank contamination
- Field blank contamination
- Spike sample recovery
- Duplicate precision
- Serial dilution results

The DVSR notes that results qualified as estimated may be used for the purposes of establishing background concentrations and for comparison to Site sample data. No data were qualified as rejected in the dataset. Based on the evaluation of each dataset, 100 percent of the data obtained during the background dataset sampling event are valid; no data was rejected. All validated data is usable for the intended purposes.

2.4 DATA USABILITY

The analytical data were reviewed for applicability and usability following procedures in the *Guidance for Data Usability in Risk Assessment (Part A)* (EPA, 1992) and *Supplemental Guidance for Assessing Data Usability for Environmental Investigations at the BMI Complex and Common Area in Henderson, Nevada* (NDEP, 2010). There are six data useability criteria set forth by EPA and NDEP by which data are judged for usability. The six criteria are:

- Criterion I: Reports to Risk Assessor
- Criterion II: Documentation
- Criterion III: Data Sources
- Criterion IV: Analytical Methods and Detection Limits
- Criterion V: Data Review
- Criterion VI: Data Quality Indicators (DQIs)

2.4.1 Reports to Risk Assessor

This criterion evaluates whether all appropriate data and documentation are available for the risk assessment and other planned uses. The following information components for the determination of data usability are identified:

- 1. Site description, conceptual Site mode, and objectives for field investigations are provided in the NDEP-approved Phase II SAP (Broadbent, 2021).
- 2. A Site map with sample locations is provided in Figure 4.
- 3. Sampling design and procedures, including rationale, are provided in the NDEP-approved Phase II SAP (Broadbent, 2021) and discussed in Sections 2.1 and 2.2.
- 4. Analytical methods and detection limits are provided in the Phase II SAP (Broadbent, 2021).
- 5. A complete dataset, including sample quantitation limits (SQLs) and qualifiers, is provided in Appendix A and B of the DVSR.
- 6. QC results are provided by the laboratory, including blanks, replicates, and spikes. The laboratory QC results are included as part of the DVSR.
- 7. The laboratory provides a narrative with each analytical data package outlining problems encountered in the laboratory, control limit exceedance, and rationale for deviations from protocol. These narratives are included as part of the DVSR.
- 8. Data flags used by the laboratory and data validator are provided in the DVSR.
- 9. Electronic files containing the raw data made available by the laboratory are included as part of the DVSR.
- 10. Laboratory analytical data packages are provided in the DVSR.

2.4.2 Data Sources

The objective of the data source review is to ensure that the analytical methods used for the investigation are appropriate. The data collection activities were primarily developed to characterize background metals and potential impacts to downwind areas. Analytical methods used were set forth in the Phase II SAP and are analytical methods established by the EPA (Broadbent, 2021). Additionally, the laboratory that performed all analytical methods evaluated in this analysis is accredited by the State of Nevada. Therefore, the analytical methods and data sources for the chemical and physical parameters are appropriate for use.

2.4.3 Documentation

The documentation review ensures that each analytical result can be traced to a sample location, and the procedure(s) used to collect the environmental samples were appropriate. The samples were collected in accordance with the SOPs presented in the NDEP-approved Phase II SAP (Broadbent, 2021). The chain-of-custody forms prepared in the field were reviewed and compared to the analytical data results provided by the laboratory to ensure completeness of the dataset as discussed in the DVSR. Field procedures included documentation of sample times, dates and locations, and other sample-specific information (e.g., sample depth). This sample collection information is part of the project sample database. Figure 4 presents the location of all samples collected as part of the background investigation.

The laboratory reported the analytical data in a format that provides information needed for data evaluation. Each laboratory report describes the analytical method used, provides results and detection limits on a sample-by sample basis, and provides the results of appropriate quality control samples (e.g., laboratory control spike samples, sample surrogates and internal standards [organic analyses only], and matrix spike (MS) samples). Reported sample analysis results were imported into the project database.

2.4.4 Analytical Methods and Detection Limits

For a chemical result to be usable for assessing risks, the analytical method must appropriately identify the chemical, and the sample detection limit must be at or below a concentration that is associated with risk-based benchmark levels. The analytical methods were reviewed in the Phase II SAP to ensure their detection limits were at or below risk-based screening levels (Broadbent, 2021). The laboratory reports detail the EPA analytical methods used to analyze samples and the methods are documented in the laboratory reports. Metals were analyzed via EPA Method 6020A, rather than EPA Method 6020B as specified in the Phase II SAP. Analytical results were reviewed to evaluate laboratory sample quantitation limits (SQLs) to ensure they were sufficient for the intended use. Table A.2 in Appendix A presents summary statistics for both detected and non-detected analytical results. For most of the metals analytical results, the frequency of detection (FOD) was above 75%. For all non-detect results, the SQLs were well below the risk-based screening levels. Additionally, analytical results that were "J" flagged as estimated were primarily due to blank contamination (both laboratory and blank contamination) and not a result of analytical methods or detection limits.

2.4.5 Data Review

The data review portion of the data usability process focuses primarily of the quality of the analytical data performed by a professional knowledgeable in analytical procedures and data application. As noted previously, two levels of validation were conducted. As detailed in the Phase II SAP, 10 percent of samples received Stage 4 validation and the remaining 90 percent received Stage 2B. The DVSR details the aspects of the data review.

2.4.6 Data Quality Indicators

DQIs address field and analytical data quality to ensure it is appropriate for making decisions affecting activities at the Site. The DQIs address the field and analytical data quality aspects as they affect uncertainties in the data collected. The DQIs include precision, accuracy, representativeness, comparability, and completeness (PARCC). The Phase II SAP provides the definitions and specific criteria for assessing DQIs using field and laboratory QC samples. Data validation activities included the evaluation of PARCC parameters, and data not meeting the established PARCC criteria were qualified during the validation process and are noted in the DVSR.

2.4.6.1 Completeness

Completeness for field sampling is measured by the total number of acceptable data points and total number of samples collected by medium and lithology. No data were rejected during the data validation process. Data without qualifiers and data that are qualified as estimated (J, J+, J-) or estimated non-detected (UJ) are considered to be valid and usable. Therefore, completeness for each dataset was 100 percent. The data reported are suitable for their intended use. The percent completeness was acceptable to support the decision-making process and reporting activities of this investigation.

2.4.6.2 Comparability

Comparability of the data is a qualitative parameter that expresses the confidence with which one data set may be compared with another. To ensure comparability, standard EPA analytical methods were used for samples collected as part of this investigation reporting data in standard units, normalizing results to standard conditions, and using standardized reporting formats and data validation procedures. To ensure that data derived from this field effort are comparable, all like-media samples were submitted for analysis by the same analytical method (with like analytical parameters and similar detection/reporting limits); units of measure (e.g., microgram per kilogram) are the same for reporting for each media and analytical method; and like media were sampled, handled, and prepared in the same manner. Additionally, SOPs set forth in the Phase II SAP were followed for sample collection. These ensure that the background soil dataset is comparable to Site datasets for future investigations.

2.4.6.3 Representativeness

Representativeness is a qualitative parameter and is defined by the degree to which data accurately and precisely represent a characteristic of a population. Stratified systematic random design was specified in the Phase II SAP for samples collected for this background report. To ensure representativeness, the areas were stratified according to geologic subunits and substratified according to upwind/downwind position relative to the mine and mill or other areas of human activity, based on historical weather patterns. Only those portions of the Site undisturbed by mining, milling, or other human activities were sampled for background, except the ore body, where discrete locations are accessible in the pits. The sample data collected are representative of background conditions for the lithologies identified.

Additionally, the DVSR evaluated sample collection, including chain of custody (COC) documentation, sample labeling, collection dates, and condition of the samples upon receipt at the laboratory. Laboratory procedures also were examined, including anomalies reported by the laboratory, either upon receipt of the samples at the laboratory or during analytical processes, adherence to recommended holding times of samples prior to analysis, calibration of laboratory instruments, adherence to analytical methods, and completeness of data package documentation. The DVSR analysis did not determine any QC issues that would affect the representativeness of the analytical results.

2.4.6.4 Precision

Precision is a measure of the repeatability of a single measurement and is evaluated from the results of duplicate samples. It is determined by analyzing spike sample pairs [matrix spike (MS)/matrix spike duplicates (MSD)], and matrix duplicate pairs. Precision is expressed as the relative percent difference of a pair of values (or results). The DVSR showed that laboratory duplicate imprecision does occur but is not specific to any one analyte or sample. A total of four results (manganese, lead, antimony, and selenium) were qualified due to precision outliers. For this dataset the MS/MSD pair is the only duplicate analysis provided as there were no field duplicates collected. The qualifications did not result in rejection of data. Data qualified due to precision outliers were accepted as valid results. There are two main reasons for imprecision in regard to MS/MSD pairs: 1) the samples contain particles of different size which makes sample homogenization impossible and 2) elevated concentration of analyte can impact or mask spike amount yielding low or no recovery. There do not appear to be any data usability issues associated with precision.

2.4.6.5 Accuracy

Accuracy is a measure of overestimation or underestimation of reported concentrations and is evaluated from the results of spiked samples. Accuracy is assessed by evaluating instrument calibrations and comparing MS, MSD, laboratory control standard, laboratory control standard duplicate, and surrogate recoveries with associated QC limits. The laboratory control standard measures the accuracy of the method extraction process, and the MS measures the effects the matrix has on accuracy. For metals, additional QC elements such as serial dilutions and post spikes may also be used for determining accuracy. Accuracy is expressed as percent recovery.

Laboratory control standard recoveries were within control limits. A total of five results from MS analyses were qualified due to recoveries outside control limits. MS or MSD recoveries masked by high analyte concentration were not qualified. The outliers are from antimony (three, low recovery), lead (one, high recovery) and manganese (one, high recovery). The high recoveries for lead and manganese are due to high concentration of analyte in sample, not greater than four times the native sample. The low recovery of antimony appears to be matrix related since the laboratory control standard recovery were successful. Table 6 of the DVSR details analytical results that were qualified based upon spike sample accuracy. No samples were rejected based upon accuracy issues.

3 STATISTICAL METHODS

As discussed in Section 2.3, data sets were validated before the data were used in the statistical evaluation. The following sections discuss data preparation, statistical plots, summary statistics and statistical tests, and the types of comparisons conducted.

3.1 DATA PREPARATION

3.1.1 Data Reduction

Within each stratum, it is assumed that soil samples are spatially independent by nature of the random sampling design. Sample results that were estimated between the laboratory reporting limit and the quantitation limit were J-qualified and were treated as detections at their estimated values. Sample results reported as non-detect were treated as less than the SQL. For data sets with non-detects, Kaplan-Meier product limit estimators were used to compute the sample mean and variance.

3.1.2 Exploratory Analyses and Outlier Identification

Normal quantile-quantile (Q-Q) plots (Appendix B) and side-by-side box plots (Appendix C) were used for exploratory data analysis to examine the data distribution and to identify both potential outliers and the presence of multiple data populations. Outliers were identified using an iterative process combining a graphical approach with a formal statistical outlier test as recommended by EPA (EPA, 2015).

A normal Q-Q plot is a probability plot that compares the quantiles (aka, percentiles) of the sample data to the expected quantiles assuming a normal distribution. Q-Q plots were examined for jumps and breaks of significant magnitude suggesting the presence of potential outliers or samples coming from

multiple populations (e.g., mixed lithology groups). On a normal Q-Q plot, sample results that follow a straight line suggest a normal distribution. In addition, if one or several observations were well separated from the line, they were identified as possible outliers. In addition, Q-Q plots show potential outliers identified as sample results exceeding 3.5 standard deviations above the median as suggested by Iglewicz and Hoaglin (1993) with the robust bias-corrected scale estimator Q_n used to compute the standard deviation as recommended by Rousseeuw and Croux (1993). As shown in the Q-Q plots the potential outlier threshold was computed as:

Potential Outlier Threshold \geq median + 3.5 × robust standard deviation.

Both the median and robust standard deviation $S(Q_n) = d_n \times Q_n$ were computed from detected sample results. Details for computing Q_n and the bias correction factor d_n can be found in Croux and Rousseeuw (1993). The Q-Q plot graphs were generated using SAS software, version 9.4 of the SAS System for Windows. The Q_n statistic was computed using SAS PROC UNIVARIATE and Q-Q plots were generated with SAS PROC SGPLOT. Summary statistics including the Qn statistic for the raw data (data with potential outliers) are presented in Appendix A.

Box plots were constructed based on the median and inter-quartile range as well as 1.5 times the interquartile range for the whiskers. Observations beyond the whiskers were identified as possible outliers for further testing. Box plots graphs were generated using PROC SGPLOT in SAS software, version 9.4 of the SAS System for Windows.

Fifteen observations identified to be potential outliers were further evaluated to determine if there was sufficient scientific rationale to remove the observations from the background data set. The final disposition of outliers is summarized in Table 2. The locations of removed outliers are shown in Figure 5.

Three samples in the sedimentary background area identified as potential outliers (BG-111-01-01 [anomalous lead and manganese], BG-111-02-01 [anomalous zinc], and BG-111-05-01 [anomalous copper]) were located in or very close to the geologic subunit Qtg, described as older alluvial fan sediments noted as having a significant amount of clasts deriving from the River Mountain volcanics. For this reason, these three samples may represent a mixture between the Muddy Creek Formation/sediments derived from the Muddy Creek Formation and the River Mountain volcanics and are not representative of the sedimentary background units and were thus eliminated for calculation of BTVs.

Arsenic concentrations measured in sample BG-111-07-01 were more than twice the concentrations measured in other samples in the sedimentary units, so this sample eliminated from the dataset as an outlier for calculating the BTVs. Results for chromium, copper, and zinc concentrations in sample BG-111-07-01 were also high relative to other samples collected.

Sample BG-111-23-01, potentially an outlier due to concentrations of antimony, was eliminated from the dataset because it was spatially distinct from other sedimentary background samples and was collected from an alluvial channel surrounded by the River Mountain volcanics. As a result, it may be a mixture between the sedimentary background and volcanic background areas.

Five River Mountain background samples (stratum 1.2.1) identified as potential outliers (BG-121-01-01 [anomalous chromium, copper, and zinc], BG-121-02-01 [anomalous chromium, copper, selenium, and zinc], BG-121-07-01 [anomalous copper], and BG-121-24-01 [anomalous copper]) were located together

geographically on the south end of the ridge to the east of the site. Slightly higher metals concentrations measured in these five samples may be the result of windblown sediment on the ridge. As a result, they were excluded from the dataset used to calculate the River Mountain volcanics BTVs. BG-121-06-01 was also removed because of its proximity to BG-121-01-01, BG-121-07-01, and BG-121-24-01.

Individual metals excluded for River Mountains background samples BG-121-18-01 (anomalous manganese) and BG-121-26-01 (anomalous lead and manganese) were excluded at the request of NDEP in the meeting held on October 13, 2021. Results of another River Mountain background sample (BG-121-03-01) indicated anomalous lead concentrations; no rationale was identified to remove this sample so it was retained.

Finally, sample BG-13-13-01 (identified as a potential outlier due to anomalous arsenic concentrations), was excluded because concentrations of arsenic were more than twice as high as other samples collected from the ore body. Another ore body sample (BG-13-02-01) was identified as having anomalous selenium concentrations, but no rationale was identified to remove this sample so it was retained.

3.2 DESCRIPTIVE SUMMARY STATISTICS

The following summary statistics were computed as per the NDEP *Guidance on the Development of Summary Statistics* (2008):

- Number of samples
- Number of detected concentrations
- Minimum detected concentration
- Median detected concentration
- Mean of the detected concentrations
- Maximum detected concentration
- 25th percentile of the detected concentrations
- 75th percentile of the detected concentrations
- Standard deviation of the detected concentrations
- Number of non-detected concentrations
- Minimum non-detected value
- Maximum non-detected value
- 25th percentile non-detect
- Median non-detect
- Mean of the non-detects
- 75th percentile non-detect
- Standard deviation of the non-detects

Summary statistics were computed using PROC UNIVARIATE in SAS/STAT software, version 9.4 for Windows. Percentiles were computed using the empirical distribution function with averaging method. (Hyndman and Fan, 1996). Background summary statistics are presented in Table 3.

3.3 STATISTICAL METHODS

BTVs representing not-to-exceed values for each metal were calculated for each of the following data sets:

- Muddy Creek Formation (Stratum 111)
- River Mountain (Stratum 121)
- Ore Body (Stratum 13)

In addition to computing the BTVs, statistical comparisons were conducted to compare the distribution of metals among the following stratum:

- Sedimentary Units of Downwind Parcels (112) versus Muddy Creek Formation (111)
- Volcanic Units of Downwind Parcels (122) versus River Mountain Background (121)

The following sections detail the statistical methods used in calculating the BTV and statistical hypothesis tests.

3.3.1 BTV Determination

Combined graphical and formal outlier tests were performed on the data to assure that data used to calculate the BTVs are representative of background. EPA guidance (EPA, 2002 and 2015) specifies that upper limits such as the upper prediction limit (UPL) or upper tolerance limit (UTL) be used for calculating the BTV. These upper limits represent the upper range of background concentrations, such that metals concentrations from unimpacted samples are unlikely to exceed them (i.e., a low rate of false positives is expected). BTVs can be used to screen individual sample results to determine if the sample is likely representative of background. Choosing between the UPL or UTL as the BTV requires balancing false positive and false negative error rates. For a given confidence coefficient (e.g., 95% confidence), the UPL is less than the UTL and therefore has a lower per comparison false negative error rate. However, the false positive error rate for the UPL increases with each comparison to an onsite sample whereas the false positive error rate of the UTL is the same regardless of the number of comparisons. Due to the potentially high false positive error rate, the use of a UPL is not recommended when multiple comparisons are to be made (EPA, 2015). Therefore, the UTL was chosen as the BTV in this study.

3.3.2 Computation of BTVs for Metals

Using the outlier-free data, BTVs were computed as the UTL with 95% confidence coefficient and 95% coverage (UTL95-95). The UTL95-95 represents the 95% upper confidence limit on the 95th percentile of the background samples. The UTL95-95 was computed using EPA's ProUCL version 5.1 software (EPA, 2015). ProUCL conducts goodness-of-fit tests on the detected sample results against normal, gamma, and lognormal distributions at the 95% confidence level and provides a conclusion as to whether or not the data fit the given distribution. This information was used to choose a parametric UTL based on the following order of preference: normal distribution, gamma distribution, or lognormal distribution. ProUCL outputs are attached in Appendix D. Table 4 summarizes the distribution assumed for each data set and the computed BTV.

3.3.3 Comparison of Strata

Statistical analyses were conducted to infer whether background datasets are comparable and whether there exist relationships between concentrations of some of the metals. Comparisons between strata were conducted using the generalized Wilcoxon test. The generalized Wilcoxon test is an extension of the nonparametric Wilcoxon rank-sum test that uses Gehan rankings to compare the empirical distribution function (EDF) among two or more groups. The EDF is an empirical estimate of the data population's cumulative distribution function and can represent non-detect results without arbitrary substitution (e.g., ½ SQL). The generalized Wilcoxon test can be used to compare multiple groups when many of the observations are non-detect with multiple SQLs. The null hypothesis is that the EDFs among the group EDFs. Appendix E shows the EDFs for each SRC by lithology group. Tables 5a and 5b summarize the results of the generalized Wilcoxon test at the 95% confidence level. The generalized Wilcoxon test was conducted using PROC LIFETEST in SAS/STAT software, version 9.4 for Windows.

3.3.3.1 Sedimentary Units of Downwind Parcels versus Muddy Creek Formation

Although concentrations of both selenium and zinc were significantly higher in the Sedimentary Units of Downwind Parcels stratum (112) than in the Muddy Creek Formation stratum (111) (p < 0.05), we are not implying that the sedimentary units of the downwind parcels represent background concentrations.

3.3.3.2 Volcanic Units of Downwind Parcels versus River Mountain Background

Concentrations of chromium, copper, lead, and zinc were significantly higher in the Volcanic Units of Downwind Parcels stratum (Unit 122) than in the River Mountain Background stratum (Unit 121) (p < 0.05).

4 SUMMARY AND CONCLUSIONS

The purpose of the background study was to collect and analyze soil samples to determine background concentrations of metals that will be used in three decisions: 1) the assessment of remediation completeness, 2) the assessment of whether significant airborne deposition of metals may have occurred in downwind, undisturbed portions of the Site, and 3) the evaluation of potential borrow materials.

Samples were collected from three geologic units: sedimentary rocks of Muddy Creek Formation, River Mountain volcanic rocks, and Ore-bearing rocks. Based upon the geologic units, five sample stratum were identified: Muddy Creek Formation background area (stratum 111), sedimentary units in downwind areas (stratum 112), River Mountain volcanic rocks in background areas (stratum 121), River Mountain volcanic rocks in downwind areas (stratum 122), and ore-body rocks (stratum 13). A total of 77 soil samples were collected for analysis, and BTVs were calculated from 66 samples after the identification and exclusion of 11 outliers. Additionally, individual metals for two samples were excluded from the calculation of BTVs for the River Mountain volcanic rocks (stratum 121). Sample BG-121-18-01 was excluded for manganese, and sample BG-121-26-01 was excluded for lead and manganese.

Data validation included 10 percent Stage 4 validation and 90 percent Stage 2B validation. Results qualified as estimated based on the data validation are usable for the purposes of establishing

background concentrations and for comparison to Site sample data. No sample results were rejected based upon the data validation.

The primary goal of the determination of a background dataset has been met. The dataset generated from the Muddy Creek Formation (stratum 111) and the River Mountain volcanic rocks (stratum 121) will be used as the background dataset for comparison to post-remediation samples. Additional details on which BTVs will be used for comparison to post-remediation samples will be provided in future work plans that detail area-specific risk assessments. Additionally, soil from these areas will be used as "clean cover" during future Site development. Finally, a comparison of downwind parcels of the Muddy Creek Formation and River Mountain volcanic rocks reveals these areas are not consistent with background. Potential impacts to these downwind parcels will be reviewed during Site remediation and closure activities.

ACRONYMS

ASTM	American Society for Testing and Materials			
bgs	Below Ground Surface			
Broadbent Broadbent & Associates, Inc.				
BTV Background Threshold Values				
COC	Chain of custody			
DQI Data Quality Indicator				
DVSR Data Validation and Summary Report				
EA EA Engineering, Science, and Technology, Inc. PBC				
EDF Empirical Distribution Function				
EPA U.S Environmental Protection Agency				
ft Foot/feet				
GES Geotechnical and Environmental Services, Inc.				
Lakemoor Lakemoor Development, LLC				
MWMP Meteoric Water Mobility Procedure				
MS/MSD	Matrix Spike/Matrix Spike Duplicate			
NDEP Nevada Division of Environmental Protection				
РАН	Polycyclic Aromatic Hydrocarbons			
PARCC	Precision, Accuracy/bias, Representativeness, Comparability, and Completeness			
Q-Q	Quantile-Quantile			
QC	Quality Control			
Qn	Robust scale estimator used to estimate the standard deviation in data sets that			
	may contain one or more outliers.			
SAP	Sampling and Analysis Plan			
SIM	Selected Ion Monitoring			
Site	Three Kids Mine, Clark County, Nevada			
SOP	Standard Operating Procedure			
SQL	Sample Quantitation Limit			
SRC Site-related chemical				
UPL	Upper Prediction Limit			
UTL	Upper Tolerance Limit			

REFERENCES

- ASTM, 2013. E2242-13 Standard Test Method for Column Percolation Extraction of Mine Rock by the Meteoric Water Mobility Procedure, ASTM International, West Conshohocken, PA, www.astm.org.
- Basic Remediation Company (BRC), 2007. Background shallow soil summary report: BMI Complex and Common Areas vicinity. Appendix B: background soil sampling workplan [Internet]. Las Vegas: Nevada Division of Environmental Protection; [updated Mar. 16, 2007]; [cited 2008 Jan 15]. Available from: http://ndep.nv.gov/bmi/docs/background_shallow_soi_summary.pdf.
- Bell, J.W. and E.I. Smith, 1980. Geologic Map of the Henderson Quadrangle, Nevada. Ed. NV Bur. of Mines & Geology. Map No. 67. Reno: U. of Nevada, Reno.
- Broadbent, 2021. Phase II Sampling and Analysis Plan. Three Kids Mine , Clark County Nevada. November 3.
- CDFriday, 2021. Data Validation Summary Report. Reporting of Three Kids Mine Background Study Data. Three Kids Mine, Henderson, Nevada. Prepared for Broadbent and Associates Inc., August 2021. Draft.
- CH2M Hill, 2008. Henderson Landfill Response Program Site soils criteria [Internet]. Las Vegas: NV Div. of Envmtl Protection; [cited Jan. 15, 2008]. Available from: http://ndep.nv.gov/bmi/docs/Site_soils_criteria_tm_complete06.pdf.
- Croux, C., and Rousseeuw, P. J. (1992). "Time-Efficient Algorithms for Two Highly Robust Estimators of Scale." Computational Statistics 1:411–428.
- EPA, 1992. Guidelines for Data Usability in Risk Assessment (Part A). Office of Solid Waste and Emergency Response, Publication OSWER9285.7-09A.
- EPA, 1993. "Method 300.0: Determination of Inorganic Anions by Ion Chromatography" Revision 2.1.
- EPA, 1994a. "Method 200.7, Revision 4.4: Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry" Revision 4.4.
- EPA, 1994b. "Method 200.8: Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma-Mass Spectrometry" Revision 5.4.
- EPA, 1994c. "Method 245.1: Determination of Mercury in Water by Cold Vapor Atomic Absorption Spectrometry" Revision 3.0.
- EPA, 2002. Guidance for Comparing Background and Chemical Concentrations in Soil for CERCLA Sites. EPA 540-R-01-003-OSWER 9285.7-41. September.
- EPA, 2015. ProUCL Version 5.1.002, Technical Guide (Draft), National Exposure Research Lab, USEPA, Las Vegas Nevada, May.
- EPA, 2020a. National Functional Guidelines for Inorganic Superfund Methods Data Review. EPA 542-R-20-006. Washington, DC. November. Available from https://www.epa.gov/sites/default/files/2021-03/documents/nfg_for_inorganic_superfund_methods_data_review_november_2020.pdf.
- EPA, 2020b. National Functional Guidelines for Organic Superfund Methods Data Review. EPA 540-R-20-005. Washington, DC. November. Available from https://www.epa.gov/sites/default/files/2021-03/documents/nfg_for_organic_superfund_methods_data_review_november_2020.pdfGeotec

hnical and Environmental Services, Inc. 1998. Overburden and native material characterization, Three Kids Mine, Clark County, Nevada. Las Vegas.

- Environmental Resources Management, Tetra Tech EM Inc (ERM), 2005. Background soil sampling workplan: BMI common areas and complex vicinity. Las Vegas (NV): Basic Remediation Co. and Titanium Metals Corp.; 2005.
- Geotechnical & Environmental Svcs Inc. (GES), 1998. Overburden and native material characterization, Three Kids Mine, Clark County, Nevada. Las Vegas.
- Hunt, C.B., V.E. McKelvey, and J.H. Wiese, 1942. The Three Kids Manganese District, Clark County, Nevada. Ed. U.S. Dept. of Interior and U.S. Geological Survey. Bulletin 936-L. Washington D.C.: GPO.
- Hyndman, Rob J., Fan, Yanan, 1996. Sample Quantiles in Statistical Packages. American Statistician. American Statistical Association. 50 (4): 361–365.
- Iglewicz, Boris and David Hoaglin (1993), "Volume 16: How to Detect and Handle Outliers", The ASQC Basic References in Quality Control: Statistical Techniques, Edward F. Mykytka, Ph.D., Editor.
- Johnson, A.C. and R.R. Trengove, 1956. The Three Kids Manganese Deposit, Clark County, Nevada: Exploration, Mining, and Processing. Ed. U.S. Dept. of Interior. Bureau of Mines. Rpt of Investigations 5209: 5-7. Washington D.C.: GPO.
- McKelvey, V.E., J.H. Wiese, and V.H. Johnson, 1949. Preliminary Report on the Bedded Manganese of the Lake Mead Region, Nevada and Arizona. Ed. U.S. Dept. of Interior and U.S. Geological Survey. Bul. 948-D: 83-101. Washington D.C.: GPO.
- Morris JM. 1954, Engineering and design of the pyro metallurgical plant, Three Kids Mine, Henderson, Nevada. Reno: University of Nevada. 8-12, 38-41 pp.
- NDEP, 2018. BMI Plant Sites and Common Areas Projects, Henderson, Nevada: Guidance on the Development of Summary Statistics Tables. Division of Environmental Protection.
- NDEP, 2010. Supplemental Guidance for Assessing Data Usability for Environmental Investigations at the BMI Complex and Common Areas in Henderson, Nevada. Bureau of Corrective Actions, Special Projects Branch. September 1.
- Nevada Bureau of Mines & Geology (NBMG), 1942. Las Vegas Mining District archive. Reno: University of Nevada.
- Pardee, J.T. and J. E.L. Jones, Deposits of Manganese Ore in Nevada, 1920. Ed. U.S. Dept. of Interior. U.S. Geological Survey. Bul. 710-F. Washington D.C.: GPO.
- Rousseeuw, P. J., and Croux, C., 1993. "Alternatives to the Median Absolute Deviation." Journal of the American Statistical Association 88:1273–1283.
- Western Regional Climate Center (WRCC), 2006a. Average wind speed MPH: Nevada [Internet]. Reno: Desert Research Institute; [cited 2006 Dec 15]. Available from: http://www.wrcc.dri.edu/htmlfiles/westwind.final.html.
- WRCC, 2006b. Prevailing wind direction: Nevada [Internet]. Reno: Desert Research Institute; [cited 2006 Dec 15]. Available from: http://www.wrcc.dri.edu/htmlfiles/westwinddir.html.
- WRCC, 2007. Las Vegas, NV [Internet]. Las Vegas: National Weather Service; [cited 5 Nov 2007]. Available from: http://www.wrh.noaa.gov/vef/regionalclimate.php.

- WRCC, 2021. "Monthly Climate Summary, Las Vegas WSO Airport, Nevada." 2021. Desert Research Institute.
- Zenitech, 2007. Phase I Environmental Site Assessment. Three Kids Mine and Mill Site, Clarke County Nevada. September 14, 2007.

FIGURES

Site Loc	ation
----------	-------

Designed		
Drawn	JCM	
Approved		

							Maxar
Lithology Qac	Qaf ₃ Qaf ₄ Qaf ₅	Qrd Qrg Qtg	Tpd Tpd ₂ Tpdt	Nevada		F	igure 3A
Qaf ₁ Qaf ₂	Qaf ₆ Qr ₁ Qr ₂	Tdb Tmcc Tmcf	Tpm Tsm	1,000 500 0	1,000 Feet	S	Site Geology
BRDADBENTIndees:8 West Pacific Avenue Henderson, NV, 890153. Not a survey. Grid o S., Range 63 E. Mount Sample grid size is 100000000000000000000000000000000000				orld Imagery Plane Nevada East FIPS 2701 Feet n at southwest corner of Section 34, Township 21 blo Meridian, Index grids on 500 foot intervals. et.		Forme	r Three Kids Mine
(702) 563-0600 (P) * (702) 563-0610 (F) 4.			4. Geographic grid on map o	divided at 30 seconds of la	titude and longitude.	Designed Drawn	JCM
						Approved	

LITHOLOGIC KEY

DETAILED LITHOLOGY

QUATERNARY)

Qac - Compacted alluvium. Roads and reworked alluvium or

topography.

Qrg – Graded pediment / alluvial plain deposit. Alluvial deposits cobble and dominantly sand and silt sized. typically composed of decomposing Powerline Road volcanic commingled with other material from the area.

materials which have been graded, transported, and commingled and overlooking, the former mill area. or covered with product, and/or Tsm material. This is typical of

debris and modern refuse are common.

Qaf₁ – Tailings. Tailings of the former Three Kids Mine and Mill content (Qaf₅). Site. Unit composed of dark colored clay, silt, and sand sized particles. Materials were flow deposited into artificial ponds EARLIER QUATERNARY DEPOSITS created by damming drainages. Tails are lead and arsenic laden residues containing diesel-range petroleum constituents, polar Qr1 – Wash Deposits. Alluvial deposits derived mainly from the prone to liquefaction when agitated.

Qaf₂ – Wind blown tailings. Suspect eolian deposits of tailings Qr₂ – Pediment and fan deposits of River Mountains material. evenly scattered in the area and eolian deposits sit between the especially further from the drainage mouth. boulders. Unit occurs in only one, well demarcated area, leading to some question as to actual deposition origin of the sandy Qtg - Older alluvial fan deposits and pediments. Sandy pebble anchors and windbreaks.

Qaf₃ – Muddy Creek overburden. Gypsum, sandstone, and other thick (Bell and Smith, 1980). sedimentary units derived from the Muddy Creek formation. Material was overburden to the mining operation and is typically LATE TERTIARY DEPOSITS found in the form of terraced overburden piles or as a

materials.

overburden. Compacted roadways (paved and unpaved) or Qaf₄ - River Mountains alluvium / overburden. Alluvium and of the A/B Pit. Surface in this location is covered with Tsm fines or within gypsum according to Bell and Smith. 1980. Badland and

sedimentary units (Tsm). Material may have been low-grade ore, Kids Mine and Mill Site. overburden, or stockpile. Found in the form of dams, ramps, and alluvial deposits of Powerline Road volcanics and Muddy Creek to have been used to create the ore stockpile yards just south of, Mine. Top of unit is well defined beds of light gray, red, and black

tannin), water, iron, other metals, silica, and alumina. The upper silt sized particles with minor contributions of up to boulder sized area. It may also be a remnant of an interstitial unit that has been portion of the tailings material is dry and silty and prone to eolian volcanics. Deposits become more gypsiferous and contain Muddy mostly eroded away. Hydrothermal transport and deposition below ground surface, the material is a highly viscous semi-solid the Three Kids Mine and Mill Site where the drainage intersects the petrogenetic mechanism of high-grade manganese ore (wad) with Highway 564

creating a dune field within an area mottled with overburden Undisturbed pediment or fan deposits derived from Powerline formation, observable in the Hulin pit. This contact appears to be from various sources. Tailings particles are well sorted and sand Road host material. Dominantly sand and silt sized particles. May gradiated at the Hulin pit and some fluvial reworking may have sized. Overburden material up to boulder size are somewhat be gypsiferous from contributions of Muddy Creek material, occurred during Muddy Creek deposition.

material. Windblown deposits typically do not follow demarked to boulder gravels with desert pavement surfaces. Generally Tpd - Resistant volcanic units of Powerline Road. Numerous

construction material in tailings pond damns and dikes. Contains Tmcc - Muddy Creek fanglomerate. Coarse gypsiferous reddish plentiful massive gypsum boulders with clasts of red siltstone and to yellow fanglomerate. Well cemented coarse sandy, pebble to

LATE HOLOCENE AND MINE RELATED DEPOSITS (LATE sandstones. May contain minor amounts of manganiferous cobble gravels. Upper portion is well bedded with volcanic pebble Tpdt - Saddle forming volcanic units of Powerline Road. sedimentary rock (source: Tsm) and River Mountains (source: Tpd) clasts (River Mountains in origin). Locally may contain gypsiferous Tuffaceous interbedded units in the River Mountains. Units siltstone interbedding. Lower portion is poorly to moderately consist of interbedded pyroclastic, breccia, dacite, zeolitized, and bedded with igneous and reworked sedimentary clasts. perlitic flows. Breccias often contain purple/red andesite xenoliths. Rock units are dark grey, buff or tan. Previously mapped graded and currently developed/occupied properties. In the west rock from Powerline Road volcanic units similar in origin to Qrg. Tmcf - Muddy Creek Formation. Sedimentary beds of red by Bell and Smith (1980) as part of the Tpd, the units are of the Three Kids Mine area, a large swath is a former ultra light May be remnants of the original alluvial plain in place or relocated siltstone, sandy siltstone, and claystone, with dominate white to separately mapped here due to their fissle/less resistant qualities. landing strip. Comparative topography from 1917 data suggests alluvial plain overburden from mining operations. Largest deposit light pink, massive gypsum occurring in the upper portion. These units are easily decomposed and are saddle formers in the many of these roads are "built up" or elevated above natural forms the base terrace of a multi-terraced overburden pile north Claystone interbedding locally occurring. Locally manganiferous River Mountains.

tailings 1-6 inches thick. Particle sizes typically no larger than bluff former in the region although, at Three Kids Mine, the unit is Tpd2 – Resistant volcanic units of Powerline Road. Gravish red mainly buried or has been distributed through mining activity. to red dacite flows. Contain numerous clasts/xenoliths of grey These units unconformably overlie Tsm and Tpd in the Three Kids andesite. Bell and Smith (1980) noted vertical thickness of materials from the River Mountains. Locally graded or compacted Qaf₅ - Manganiferous sedimentary fill. Pyroclastics, sandstones area. They are thought to have been "lapped" into a graben 150-200 feet. The unit is a resistant ridge former in the River based on the presence of building foundations, but not and other material derived from Tertiary manganiferous structure of the River Mountains that is the location of the Three Mountains and considered a marker horizon for the northern part of the mountain range. At the Three Kids Mine the unit outcrops exclusively in the southeastern area of the site within the "House"

Qrd – Disturbed, graded, commingled, alluvial deposits. Former unterraced overburden piles. Most significant deposit is thought Tsm – Manganiferous sedimentary rocks of the Three Kids region. manganese rich tuff, tuffaceous sandstone, and siltstones. Forms Tpm - Resistant volcanic units of Powerline Road. Interbedded a "bacon rind" appearance many tens of feet thick feet where basalt and andesite flows of the River Mountains. Basalts are the former mill site in the Three Kids Mine area, where dark Qaf₆ - Artificial fill. Transported, compacted, and graded fill of exposed. A basal sub-unit of Tsm as exposed at the Hulin pit is typically vesicular and mafic containing phenocrysts of augite and sediments produced by mill activities cover the area from a few fine sand to gravel sized particles. Material is composed of comprised of a thick (up to 100 feet), poorly bedded, unsorted olivine. Andesites are reddish purple with plagioclase, inches to feet thick and large area grading is evident. Mining commingled Qaf₃, Qaf₄, and Qaf₅ that have been used to "build breccia with clasts from <1 inch to >3 feet in diameter and of hornblende, and augite phenocrysts. These are ridge formers in up" an area along Lake Mead Parkway within a developed volcanic origin. Sub-unit probably deposited as mud or debris the River Mountains and occur mainly on the eastern boundary of property. Distinguished from Qac by its high manganiferous fill flow(s) and appears to represent a single large, or limited series of the Three Kids Mine and Mill Site. large deposition events.

Tsm was originally mapped as part of the Muddy Creek formation Associated with Tpd and Tpdt in the Three Kids Mine area. (McKelvey et al., 1949; Longwell et al., 1965). Bell and Smith, Thickness variable. Only dikes >10 feet thick are mapped. 1980, present that the Tsm may be closer associated to the organic compounds (Oronite-S, linoleic acid, oleic acid, and wood River Mountains (Powerline road volcanics). Dominantly sand and Powerline Road units that comprise the River Mountains in the KEY TO MAP SYMBOLS deflation and transport. Within ponds, approximately five feet Creek formation material within the drainage on the east side of from, and within, this unit into faults and fractures may have been Contact. Dashed where approximate or concealed. formation. Chemical data from fault gauge within the Tsm at the Hulin pit indicates high arsenic and lead. Tsm, where present, Fault. Dashed where underlies and unconformably contacts the Muddy Creek concealed, ball on downthrown side. ∕45 Strike and dip of beds

MID TERTIARY ROCKS

boundaries; however, the overburden may be acting as dune gypsiferous with dacite and other volcanic clasts originating from dacite flows. Units are texturally variable, plagioclase, biotite, and the River Mountains. Pediment former, Surface typically hornblende bearing. Flows are commonly banded. Bell and Smith unconformably overlying Tmcc of Tmcf. Units range from 1-30 feet noted large amplitude flow folds. Unit as mapped is a ridge former in the River Mountains. Dacite varies in color from gray on fresh surfaces to reddish black on well weathered surfaces. Upper and lower parts of many flows, and at the contact between Tpd and Tpdt. are brecciated.

Tdb – Dikes. Basalt/Andesite composition dikes of Miocene age.

45 Strike and dip of foliation

1110 (uuin) Mine Waste

Figure 3B			
Detailed Geologic Map Key			
Former Three Kids Mine			
Designed			
Drawn	JCM		
Approved			

TABLES

Broadbent & Associates, Inc. Las Vegas, Nevada

TABLE 1 ANALYTICAL RESULTS

	Location ID	BG-111-01-01	BG-111-02-01	BG-111-03-01	BG-111-04-01	BG-111-05-01	BG-111-06-01	BG-111-07-01	BG-111-08-01	BG-111-09-01	BG-111-10-01	BG-111-11-01
	Sample Name	BG-111-01-01	BG-111-02-01	BG-111-03-01	BG-111-04-01	BG-111-05-01	BG-111-06-01	BG-111-07-01	BG-111-08-01	BG-111-09-01	BG-111-10-01	BG-111-11-01
	Sample Date	5/19/2021	5/19/2021	5/18/2021	5/19/2021	5/19/2021	5/17/2021	5/19/2021	5/19/2021	5/20/2021	5/18/2021	5/18/2021
	Sample Depth	0-1 ft bgs										
Analyte	Unit	Result										
Metals (SW6020A)												
Antimony	mg/kg	0.287 J	0.224 J	0.177 J	0.324 J	0.171 J	0.228 J	0.315 J	< 0.168 U	0.202 J-	< 0.169 U	0.382 J
Arsenic	mg/kg	11.9	11 J+	4.38	6.26	9.02	7.64	48.8	7.62	3.69 J	8.02	16.4
Cadmium	mg/kg	0.127 J	0.133 J	0.1 J	0.116 J	< 0.0864 U	0.142 J	< 0.0907 U	< 0.0867 U	< 0.0873 U	0.0971 J	0.122 J
Chromium	mg/kg	16.6	12.6	8.19	12.8	3.06 J	11.1	20.7	7.1	3.28 J	5.5	11.2
Copper	mg/kg	23.5	23.3	8.57	15.3	37.2	13.2	38.6	7.98	7.17 J	9.21	11.3
Lead	mg/kg	88.2	79.1	11.4	34.6	23.3	33.2	23.4 J	12.8	3.25 J	11.2	21.9
Manganese	mg/kg	1670	1350	449	625	434	602	518	593 J	137 J	277	451
Selenium	mg/kg	0.478 J	0.318 J	0.268 J	0.388 J	0.226 J	0.335 J	0.363 J	< 0.183 U	0.187 J	< 0.184 U	0.401 J
Zinc	mg/kg	139	165	57.2	74.1	29.5	81.5	123	23.4 J	18.5 J	26.6	58.7
PAHS (SW8270C/E SIM)												
Benzo[a]anthracene	mg/kg											
Benzo[a]pyrene	mg/kg											
Benzo[b]fluoranthene	mg/kg											
Benzo[g,h,i]perylene	mg/kg											
Chrysene	mg/kg											
Dibenzo[a,h]anthracene	mg/kg											
Indeno[1,2,3-cd]pyrene	mg/kg											
Phenanthrene	mg/kg											
Pyrene	mg/kg											

-- = not analyzed

ft bgs = feet below ground surface

J = Estimated value.

J+ = Estimated value, biased high.

J- = Estimated value, biased low.

mg/kg = milligram(s) per kilogram

PAH = polycyclic aromatic hydrocarbons

U = Analyte not detected.

Background Soil Report Three Kids Mine

April 2022
TABLE 1 ANALYTICAL RESULTS

	Location ID	BG-111-12-01	BG-111-13-01	BG-111-14-01	BG-111-15-01	BG-111-16-01	BG-111-17-01	BG-111-18-01	BG-111-19-01	BG-111-20-01	BG-111-21-01	BG-111-22-01
	Sample Name	BG-111-12-01	BG-111-13-01	BG-111-14-01	BG-111-15-01	BG-111-16-01	BG-111-17-01	BG-111-18-01	BG-111-19-01	BG-111-20-01	BG-111-21-01	BG-111-22-01
	Sample Date	5/19/2021	5/18/2021	5/20/2021	5/20/2021	5/18/2021	5/18/2021	5/17/2021	5/18/2021	5/18/2021	5/17/2021	5/20/2021
	Sample Depth	0-1 ft bgs										
Analyte	Unit	Result										
Metals (SW6020A)												
Antimony	mg/kg	< 0.17 U	0.255 J	0.23 J	0.3 J	0.456 J	< 0.169 U	0.205 J	0.334 J	0.187 J	0.177 J	0.197 J
Arsenic	mg/kg	16.4	14.9	9.26 J	7.79 J	6.43	6.9	7.18	8.29	7.83	6.6	4.9 J
Cadmium	mg/kg	0.0952 J	0.151 J	< 0.0897 U	0.137 J	0.203 J	< 0.0873 U	0.104 J	0.106 J	< 0.0874 U	0.14 J	< 0.0874 U
Chromium	mg/kg	12.4	12.5	8.21	7.14	8.04	6.03	10.7	11.7	9.17	10.3	3.34 J
Copper	mg/kg	13.5	16.1	11.8 J	11.4 J	12	10.5	13.7	12.7	10.8	13.4	8.92 J
Lead	mg/kg	10.6	24.7	13 J	17.4 J	34.8	7.94	25.1	41.9 J	9.7	31.7	25.8 J
Manganese	mg/kg	406	637	597 J	372	981	196 J	896 J	747 J	250	495	331
Selenium	mg/kg	0.486 J	0.395 J	0.432 J	0.44 J	0.355 J	< 0.184 U	0.363 J	0.436 J	0.375 J	0.321 J	0.25 J
Zinc	mg/kg	34	74.8	34.6 J	35.7 J	49.4	18.4 J	65.8	68.1	33.9	65.4	29.4 J
PAHS (SW8270C/E SIM)	-											
Benzo[a]anthracene	mg/kg											
Benzo[a]pyrene	mg/kg											
Benzo[b]fluoranthene	mg/kg											
Benzo[g,h,i]perylene	mg/kg											
Chrysene	mg/kg											
Dibenzo[a,h]anthracene	mg/kg											
Indeno[1,2,3-cd]pyrene	mg/kg											
Phenanthrene	mg/kg											
Pyrene	mg/kg											

-- = not analyzed

ft bgs = feet below ground surface

J = Estimated value.

J+ = Estimated value, biased high.

J- = Estimated value, biased low.

mg/kg = milligram(s) per kilogram

PAH = polycyclic aromatic hydrocarbons

U = Analyte not detected.

Background Soil Report Three Kids Mine

TABLE 1 ANALYTICAL RESULTS

	Location ID	BG-111-23-01	BG-112-01-01	BG-112-02-01	BG-112-03-01	BG-112-04-01	BG-112-05-01	BG-121-01-01	BG-121-02-01	BG-121-03-01	BG-121-04-01	BG-121-05-01
	Sample Name	BG-111-23-01	BG-112-01-01	BG-112-02-01	BG-112-03-01	BG-112-04-01	BG-112-05-01	BG-121-01-01	BG-121-02-01	BG-121-03-01	BG-121-04-01	BG-121-05-01
	Sample Date	5/20/2021	5/20/2021	5/21/2021	5/21/2021	5/21/2021	5/21/2021	5/19/2021	5/19/2021	5/18/2021	5/18/2021	5/17/2021
	Sample Depth	0-1 ft bgs										
Analyte	Unit	Result										
Metals (SW6020A)												
Antimony	mg/kg	0.75 J	0.369 J	0.285 J	< 0.173 UJ	0.225 J	< 0.169 U	0.286 J	0.178 J	0.194 J	< 0.166 U	0.494 J
Arsenic	mg/kg	7.7 J	156 J	50.7 J	13.6 J	46 J	8.51 J	7.48 J	6.35 J	7.85 J	9.07 J	6.13 J
Cadmium	mg/kg	< 0.0877 U	0.533 J	0.588 J	0.537 J	0.467 J	< 0.0872 U	0.11 J	0.106 J	0.0959 J	< 0.0857 U	0.184 J
Chromium	mg/kg	5.91	14.4	9.14	10.2	10.6	13	17.9 J	16.6 J	4.97 J	7.78 J	4.52 J
Copper	mg/kg	25.2 J	40.8 J	12.6 J	9.51 J	17.8 J	13.4 J	28.2	38.9	19	22	5.29 J
Lead	mg/kg	41.9 J	1060 J	274 J	72.5 J	244 J	18 J	18.6	24.5	30.9	18.9	12.6
Manganese	mg/kg	1230	13300	2630	330	2980	697	337 J	369 J	312 J	253 J	254 J
Selenium	mg/kg	0.221 J	0.786 J	0.34 J	0.382 J	0.68 J	0.397 J	1.21 J	1.43 J	0.603 J	0.57 J	0.692 J
Zinc	mg/kg	33.9 J	182 J	262 J	148 J	324 J	140 J	147 J	230 J	35.2 J	48.8 J	14.8 J
PAHS (SW8270C/E SIM)												
Benzo[a]anthracene	mg/kg		0.013	0.0192	< 0.0018 U	0.0153	< 0.00177 U					
Benzo[a]pyrene	mg/kg		0.0131	0.0198	< 0.00187 U	0.0147	< 0.00183 U					
Benzo[b]fluoranthene	mg/kg		0.0284	0.0322	< 0.0016 U	0.0179	< 0.00156 U					
Benzo[g,h,i]perylene	mg/kg		0.0215	0.0212	< 0.00185 U	0.0159	< 0.00181 U					
Chrysene	mg/kg		0.0476	0.0359	< 0.00242 U	0.0364	< 0.00237 U					
Dibenzo[a,h]anthracene	mg/kg		0.00781	0.0068 J	< 0.00179 U	0.00659 J	< 0.00175 U					
Indeno[1,2,3-cd]pyrene	mg/kg		0.0143	0.0169	< 0.00189 U	0.0101	< 0.00185 U					
Phenanthrene	mg/kg		0.00692	0.00594 J	< 0.00241 U	0.0053 J	< 0.00236 U					
Pyrene	mg/kg		0.0172	0.0285	< 0.00209 U	0.0148	< 0.00204 U					

-- = not analyzed

ft bgs = feet below ground surface

J = Estimated value.

J+ = Estimated value, biased high.

J- = Estimated value, biased low.

mg/kg = milligram(s) per kilogram

PAH = polycyclic aromatic hydrocarbons

U = Analyte not detected.

Background Soil Report Three Kids Mine

TABLE 1 ANALYTICAL RESULTS

	Location ID	BG-121-06-01	BG-121-07-01	BG-121-08-01	BG-121-09-01	BG-121-10-01	BG-121-11-01	BG-121-12-01	BG-121-13-01	BG-121-14-01	BG-121-15-01	BG-121-16-01
	Sample Name	BG-121-06-01	BG-121-07-01	BG-121-08-01	BG-121-09-01	BG-121-10-01	BG-121-11-01	BG-121-12-01	BG-121-13-01	BG-121-14-01	BG-121-15-01	BG-121-16-01
	Sample Date	5/19/2021	5/19/2021	5/18/2021	5/18/2021	5/18/2021	5/18/2021	5/19/2021	5/18/2021	5/20/2021	5/20/2021	5/17/2021
	Sample Depth	0-1 ft bgs										
Analyte	Unit	Result										
Metals (SW6020A)												
Antimony	mg/kg	< 0.166 U	< 0.167 U	< 0.166 U	< 0.167 UJ	< 0.167 U	0.324 J	0.371 J	< 0.166 U	< 0.166 U	< 0.167 U	0.427 J
Arsenic	mg/kg	4.09 J	7.89 J	2.57 J	9.39 J	9.88 J	7.39 J	5.6 J+	4.36 J	5.09	3.65 J+	8.41 J
Cadmium	mg/kg	0.101 J	< 0.0858 U	< 0.0857 U	< 0.0861 U	< 0.0858 U	0.124 J	< 0.0857 U	< 0.0857 U	< 0.0857 U	< 0.0859 U	0.13 J
Chromium	mg/kg	7.12 J	10.4 J	3 J	3.25 J	4.31 J	3.91 J	4.88 J	2.7 J	4.18 J	3.95 J	3.73 J
Copper	mg/kg	20.1	27.1	4.31 J	5.73	3.65 J	5.46	4.26 J	3.76 J	2.72 J	5.68 J	7.05
Lead	mg/kg	12.3	8.74	5.11	8.55	8.17	22.1	7.77 J+	7.08	9.03 J	7.03 J	8.64
Manganese	mg/kg	245 J	201 J	111 J	174 J	200 J	306 J	232 J	170 J	265 J	195 J	406 J
Selenium	mg/kg	0.735 J	0.802 J	0.278 J	0.414 J	0.488 J	0.508 J	0.374 J	0.214 J	0.346 J	0.317 J	0.659 J
Zinc	mg/kg	54.2 J	59.5 J	14.5 J	38.1 J	23.5 J	12.4 J	22.6 J+	14.7 J	19.7 J	28.7 J	17.7 J
PAHS (SW8270C/E SIM)	-											
Benzo[a]anthracene	mg/kg											
Benzo[a]pyrene	mg/kg											
Benzo[b]fluoranthene	mg/kg											
Benzo[g,h,i]perylene	mg/kg											
Chrysene	mg/kg											
Dibenzo[a,h]anthracene	mg/kg											
Indeno[1,2,3-cd]pyrene	mg/kg											
Phenanthrene	mg/kg											
Pyrene	mg/kg											

-- = not analyzed

ft bgs = feet below ground surface

J = Estimated value.

J+ = Estimated value, biased high.

J- = Estimated value, biased low.

mg/kg = milligram(s) per kilogram

PAH = polycyclic aromatic hydrocarbons

U = Analyte not detected.

Background Soil Report Three Kids Mine

TABLE 1 ANALYTICAL RESULTS

	Location ID	BG-121-17-01	BG-121-18-01	BG-121-19-01	BG-121-20-01	BG-121-21-01	BG-121-22-01	BG-121-23-01	BG-121-24-01	BG-121-25-01	BG-121-26-01	BG-121-27-01
	Sample Name	BG-121-17-01	BG-121-18-01	BG-121-19-01	BG-121-20-01	BG-121-21-01	BG-121-22-01	BG-121-23-01	BG-121-24-01	BG-121-25-01	BG-121-26-01	BG-121-27-01
	Sample Date	5/17/2021	5/18/2021	5/19/2021	5/19/2021	5/20/2021	5/19/2021	5/19/2021	5/18/2021	5/19/2021	5/19/2021	5/18/2021
	Sample Depth	0-1 ft bgs										
Analyte	Unit	Result										
Metals (SW6020A)												
Antimony	mg/kg	0.574 J	< 0.166 U	< 0.17 U	0.624 J	< 0.166 U	< 0.169 U	0.512 J	< 0.166 UJ	< 0.17 U	< 0.166 U	< 0.168 U
Arsenic	mg/kg	7.48 J	4.71 J	14.2	12.3	1.51	6.19	9.21 J	2.94 J	13.6 J	2.84 J	6.67 J
Cadmium	mg/kg	0.157 J	< 0.0857 U	< 0.0874 U	0.166 J	< 0.0858 U	< 0.0868 U	0.095 J	< 0.0857 U	< 0.0873 U	< 0.0857 U	< 0.0863 U
Chromium	mg/kg	4.66 J	3.01 J	2.25 J	8	1.8 J	2.29 J	9.13 J	7.18 J	1.37 J	2.99 J	3.38 J
Copper	mg/kg	8.18	2.46 J	5.39	14.4	2.59 J	3.32 J	13.8	42.1	6.05	11.9	9.82
Lead	mg/kg	9.91	8.69	11.4	13	5.73 J	8.36	9.29	14.3	16	42.8	13.8
Manganese	mg/kg	474 J	802 J	174 J	309 J	127 J	263 J	251 J	182 J	405 J	721 J	186 J
Selenium	mg/kg	0.877 J	0.321 J	0.542 J	0.771 J	0.23 J	0.524 J	0.597 J	0.544 J	0.598 J	0.227 J	0.832 J
Zinc	mg/kg	20.2 J	16 J	32.5	44.8	11.3 J	32.6	41.4 J	40 J	36.4 J	15.5 J	32.8 J
PAHS (SW8270C/E SIM)	_											
Benzo[a]anthracene	mg/kg											
Benzo[a]pyrene	mg/kg											
Benzo[b]fluoranthene	mg/kg											
Benzo[g,h,i]perylene	mg/kg											
Chrysene	mg/kg											
Dibenzo[a,h]anthracene	mg/kg											
Indeno[1,2,3-cd]pyrene	mg/kg											
Phenanthrene	mg/kg											
Pyrene	mg/kg											

-- = not analyzed

ft bgs = feet below ground surface

J = Estimated value.

J+ = Estimated value, biased high.

J- = Estimated value, biased low.

mg/kg = milligram(s) per kilogram

PAH = polycyclic aromatic hydrocarbons

U = Analyte not detected.

Background Soil Report Three Kids Mine

TABLE 1 ANALYTICAL RESULTS

	Location ID	BG-122-01-01	BG-122-02-01	BG-122-03-01	BG-122-04-01	BG-122-05-01	BG-122-06-01	BG-122-07-01	BG-122-08-01	BG-122-09-01	BG-13-01-01	BG-13-02-01
	Sample Name	BG-122-01-01	BG-122-02-01	BG-122-03-01	BG-122-04-01	BG-122-05-01	BG-122-06-01	BG-122-07-01	BG-122-08-01	BG-122-09-01	BG-13-01-01	BG-13-02-01
	Sample Date	5/20/2021	5/20/2021	5/20/2021	5/20/2021	5/20/2021	5/21/2021	5/20/2021	5/20/2021	5/21/2021	5/20/2021	5/21/2021
	Sample Depth	0-1 ft bgs	0-1 ft bgs	0-1 ft bgs								
Analyte	Unit	Result	Result	Result								
Metals (SW6020A)			•			•						
Antimony	mg/kg	< 0.168 U	< 0.166 U	< 0.167 U	0.167 J	< 0.168 U	0.177 J	< 0.17 U	< 0.167 U	< 0.166 UJ	5.29	16.5
Arsenic	mg/kg	3.53 J+	3.56	3.67	10.2	13.1	13.6	3.79 J+	11.2	4.59	1430	1210
Cadmium	mg/kg	< 0.0864 U	< 0.0856 U	< 0.0862 U	0.136 J	0.15 J	0.171 J	< 0.0874 U	0.0872 J	< 0.0857 U	0.81 J	0.765 J
Chromium	mg/kg	1.23 J	4.33 J	1.63 J	18.1	22.3	18.4	0.994 J	18.1	8.62	8.46	2.25 J
Copper	mg/kg	4.88 J	2.25 J	2.87 J	28.9	33.3	12.8	3.11 J	35.5	18.3	162	690
Lead	mg/kg	11.5 J	18.6 J	12.3	63.7	56.8	28.6	7.39 J+	85.4	18.9	9410 J+	27000
Manganese	mg/kg	190 J	234 J	129 J	477 J	558 J	286 J	109 J	637 J	231 J	207000 J	341000 J
Selenium	mg/kg	0.257 J	0.216 J	0.202 J	1.41 J	1.37 J	1.28 J	0.23 J	1.25 J	0.827 J	0.386 J	1.07 J
Zinc	mg/kg	106 J	11.4 J	51.2	136	481	90	80.4 J+	101	59.4	646 J+	398
PAHS (SW8270C/E SIM)												
Benzo[a]anthracene	mg/kg	0.00513 J+	< 0.00175 U	0.00323 J	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00175 U	0.00973	< 0.00174 U		
Benzo[a]pyrene	mg/kg	0.00202 J+	< 0.00181 U	0.00313 J	< 0.0018 U	< 0.00181 U	< 0.0018 U	< 0.00181 U	0.00474 J	< 0.0018 U		
Benzo[b]fluoranthene	mg/kg	0.0098 J+	< 0.00154 U	0.0111	0.00205 J	0.00392 J	< 0.00154 U	< 0.00155 U	0.0241	< 0.00154 U		
Benzo[g,h,i]perylene	mg/kg	0.00884 J+	0.00294 J	0.0108	0.00201 J	< 0.00179 U	< 0.00178 U	0.0019 J+	0.0186	< 0.00178 U		
Chrysene	mg/kg	0.0166 J+	0.00361 J	0.0111	0.00394 J	0.00868	< 0.00233 U	0.00443 J+	0.0331	< 0.00234 U		
Dibenzo[a,h]anthracene	mg/kg	0.00367 J+	< 0.00174 U	0.00238 J	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00174 U	0.0068	< 0.00173 U		
Indeno[1,2,3-cd]pyrene	mg/kg	0.00644 J+	0.00196 J	0.00843	< 0.00182 U	< 0.00183 U	< 0.00182 U	< 0.00183 U	0.0144	< 0.00182 U		
Phenanthrene	mg/kg	0.00406 J+	< 0.00233 U	0.00258 J	< 0.00232 U	< 0.00233 U	< 0.00232 U	< 0.00234 U	0.00598 J	< 0.00233 U		
Pyrene	mg/kg	0.0106 J+	0.00223 J	0.00661	0.00223 J	0.00251 J	< 0.00201 U	0.00208 J+	0.0164	< 0.00201 U		

-- = not analyzed

ft bgs = feet below ground surface

J = Estimated value.

J+ = Estimated value, biased high.

J- = Estimated value, biased low.

mg/kg = milligram(s) per kilogram

PAH = polycyclic aromatic hydrocarbons

U = Analyte not detected.

Background Soil Report Three Kids Mine

Anril	່າ∩າາ
ADTI	2022
-	-

TABLE 1 ANALYTICAL RESULTS

												7.611
	Location ID	BG-13-03-01	BG-13-04-01	BG-13-05-01	BG-13-06-01	BG-13-07-01	BG-13-08-01	BG-13-09-01	BG-13-10-01	BG-13-11-01	BG-13-12-01	BG-13-13-01
	Sample Name	BG-13-03-01	BG-13-04-01	BG-13-05-01	BG-13-06-01	BG-13-07-01	BG-13-08-01	BG-13-09-01	BG-13-10-01	BG-13-11-01	BG-13-12-01	BG-13-13-01
	Sample Date	5/21/2021	5/21/2021	5/21/2021	5/21/2021	5/21/2021	5/21/2021	5/19/2021	5/19/2021	5/19/2021	5/19/2021	5/19/2021
	Sample Depth	0-1 ft bgs										
Analyte	Unit	Result										
Metals (SW6020A)										•		
Antimony	mg/kg	0.226 J	2.56 J	33.7	0.664 J	0.424 J	6.72	10.2	20.3	12.3 J	15.1	20.9
Arsenic	mg/kg	31.3	790	2510	142	94.6	1110	3460	6440	4460	7100	20000
Cadmium	mg/kg	< 0.0873 U	0.131 J	0.274 J	< 0.0871 U	0.625 J	0.551 J	0.397 J	0.383 J	0.437 J	0.397 J	0.222 J
Chromium	mg/kg	10.5 J	6.37	4.65 J	8.68 J	5.01 J	11.9	6.93	4.42 J	7.86 J	5.83	4.63 J
Copper	mg/kg	16.5 J	213	633 J	178 J	95.3 J	66.7	117	331 J	498 J	292 J	483 J
Lead	mg/kg	57.5 J	12800	24900 J	2650 J	1800 J	7780	7570	3470	4760	3640	14000
Manganese	mg/kg	765 J	207000 J	299000 J	30500 J	19800 J	117000 J	204000 J	313000 J	193000 J	242000 J	205000 J
Selenium	mg/kg	0.635 J	0.294 J	0.264 J	0.316 J	0.418 J	0.446 J	0.474 J	0.355 J	0.919 J	0.465 J	0.392 J
Zinc	mg/kg	179 J	251	340 J	154 J	109 J	675	865	1310	824	1190	728
PAHS (SW8270C/E SIM)	-											
Benzo[a]anthracene	mg/kg											
Benzo[a]pyrene	mg/kg											
Benzo[b]fluoranthene	mg/kg											
Benzo[g,h,i]perylene	mg/kg											
Chrysene	mg/kg											
Dibenzo[a,h]anthracene	mg/kg											
Indeno[1,2,3-cd]pyrene	mg/kg											
Phenanthrene	mg/kg											
Pyrene	mg/kg											

-- = not analyzed

ft bgs = feet below ground surface

J = Estimated value.

J+ = Estimated value, biased high.

J- = Estimated value, biased low.

mg/kg = milligram(s) per kilogram

PAH = polycyclic aromatic hydrocarbons

U = Analyte not detected.

Background Soil Report Three Kids Mine

TABLE 2
DISPOSITION OF POTENTIAL OUTLIERS IDENTIFIED FROM NORMAL Q-Q PLOTS

Stratum	Location	latitude_wgs84	longitude_wgs84	Removed from Background Data	COMMENT
				Yes	
				(anomalous concentrations of lead	
111	BG-111-01-01	36.07295677	-114.9215859	and manganese)	Mixture of Muddy Creek (111) and River Mountain (121) zones
111	DC 111 02 01	26.07410678	114 0208005	Yes	Mixture of Muddy Creek (111) and River Mountain (121) zones
111	BG-111-02-01	50.07410078	-114.9208995		Mixture of Midduy Creek (111) and River Mountain (121) zones
				(anomalous concentrations of	
111	BG-111-05-01	36.0725804	-114.923078	copper)	Mixture of Muddy Creek (111) and River Mountain (121) zones
				Yes	
				(anomalous concentrations of	
111	BG-111-07-01	36.08067673	-114.9266653	arsenic and copper)	Not representative of Muddy Creek (111)
				Yes	
				(anomalous concentrations of	
111	BG-111-23-01	36.0778221	-114.9140366	antimony)	Spatially remote and not representative of Muddy Creek (111)
				Yes	
1.21	DC 121 01 01	26 09627026	114 0050257	(anomalous concentrations of	Not representative of River Mountain Packground (121)
121	BG-121-01-01	36.08627026	-114.9050257		
				res	
				chromium, copper, selenium, and	
121	BG-121-02-01	36.08307721	-114.9039025	zinc)	Not representative of River Mountain Background (121)
				,	
				No	
121	BG-121-03-01	36.07775683	-114.905505	(anomalous concentrations of lead)	No other rationale to remove
				Yes	
121	BG-121-06-01	36.0860593	-114.9065844	(located near BG-121-01-01)	Not representative of River Mountain Background (121)
				Yes	
				(anomalous concentrations of	
121	BG-121-07-01	36.08357474	-114.9044397	copper)	Not representative of River Mountain Background (121)
				Yes	
121	PC 121 24 01	26 07940294	114 0022226	(anomalous concentrations of	Not representative of River Mountain Background (121)
121	BG-121-24-01 BG-121-18-01	36.07670103	-114.9033330	Excluded for manganese	
121	BG-121-26-01	36.07381671	-114.9181271	Excluded for lead and manganese	
				No	
				(anomalous concentrations of	
13	BG-13-02-01	36.08017955	-114.9064317	selenium)	No other rationale to remove
				Yes	
				(anomalous concentrations of	
13	BG-13-13-01	36.07637	-114.91882	arsenic)	Not representative of Ore Body Background (13)

TABLE 3 BACKGROUND SUMMARY STATISTICS

			Detected Data						Non-Detected Data									
		No.			25th			75th		Standard			25th		1	75th		Standard
Lithology	Parameter	Samples	Ν	Min	Percentile ¹	Median	Mean	Percentile ¹	Max	Deviation	Ν	Min	Percentile ¹	Median	Mean	Percentile ¹	Max	Deviation
	Antimony	18	14	0.177	0.197	0.229	0.261	0.324	0.456	0.0859	4	0.168	0.169	0.169	0.169	0.17	0.17	0.000816
	Arsenic	18	18	3.69	6.43	7.63	8.36	8.29	16.4	3.75	0							
	Cadmium	18	12	0.0952	0.102	0.119	0.126	0.141	0.203	0.031	6	0.0867	0.0873	0.0874	0.0876	0.0874	0.0897	0.00105
	Chromium	18	18	3.28	7.1	8.69	8.82	11.2	12.8	3.01	0							
Muddy Creek Formation (111)	Copper	18	18	7.17	9.21	11.6	11.5	13.4	16.1	2.5	0							
	Lead	18	18	3.25	11.2	19.7	20.6	31.7	41.9	11.3	0							
	Manganese	18	18	137	331	473	502	625	981	231	0							
	Selenium	18	15	0.187	0.321	0.375	0.362	0.432	0.486	0.0801	3	0.183	0.183	0.184	0.184	0.184	0.184	0.000577
	Zinc	18	18	18.4	29.4	42.6	47.2	65.8	81.5	21.2	0							
	Antimony	5	3	0.225	0.225	0.285	0.293	0.369	0.369	0.0723	2	0.169	0.169	0.171	0.171	0.173	0.173	0.00283
	Arsenic	5	5	8.51	13.6	46	55	50.7	156	59.5	0							
	Cadmium	5	4	0.467	0.5	0.535	0.531	0.563	0.588	0.0496	1	0.0872	0.0872	0.0872	0.0872	0.0872	0.0872	
Codimonton Units of	Chromium	5	5	9.14	10.2	10.6	11.5	13	14.4	2.16	0							
Sedimentary Units of	Copper	5	5	9.51	12.6	13.4	18.8	17.8	40.8	12.6	0							
Downwind Parcels (112)	Lead	5	5	18	72.5	244	334	274	1060	420	0							
	Manganese	5	5	330	697	2630	3990	2980	13300	5330	0							
	Selenium	5	5	0.34	0.382	0.397	0.517	0.68	0.786	0.202	0							
	Zinc	5	5	140	148	182	211	262	324	79.4	0							
	Antimony	22	8	0.194	0.348	0.461	0.44	0.543	0.624	0.141	14	0.166	0.166	0.167	0.167	0.168	0.17	0.00151
	Arsenic	22	22	1.51	4.71	7.03	7.19	9.21	14.2	3.43	0							
	Cadmium	22	7	0.095	0.0959	0.13	0.136	0.166	0.184	0.0344	15	0.0857	0.0857	0.0858	0.0861	0.0863	0.0874	0.000597
River Mountain Packground	Chromium	22	22	1.37	2.99	3.82	4.09	4.66	9.13	1.98	0							
	Copper	22	22	2.46	3.76	5.57	7.58	9.82	22	5.42	0							
(121)	Lead	21	21	5.11	8.17	9.03	11.5	13	30.9	6.16	0							
	Manganese	20	20	111	180	252	253	308	474	95	0							
	Selenium	22	22	0.214	0.321	0.516	0.499	0.603	0.877	0.197	0							
	Zinc	22	22	11.3	15.5	23.1	26.1	35.2	48.8	11.4	0							
	Antimony	9	2	0.167	0.167	0.172	0.172	0.177	0.177	0.00707	7	0.166	0.166	0.167	0.167	0.168	0.17	0.0014
	Arsenic	9	9	3.53	3.67	4.59	7.47	11.2	13.6	4.44	0							
	Cadmium	9	4	0.0872	0.112	0.143	0.136	0.161	0.171	0.0356	5	0.0856	0.0857	0.0862	0.0863	0.0864	0.0874	0.00072
Volcanic Units of Downwind	Chromium	9	9	0.994	1.63	8.62	10.4	18.1	22.3	8.76	0							
Parcels (122)	Copper	9	9	2.25	3.11	12.8	15.8	28.9	35.5	13.7	0							
	Lead	9	9	7.39	12.3	18.9	33.7	56.8	85.4	27.9	0							
	Manganese	9	9	109	190	234	317	477	637	192	0							
	Selenium	9	9	0.202	0.23	0.827	0.782	1.28	1.41	0.553	0							
	Zinc	9	9	11.4	59.4	90	124	106	481	139	0							
	Antimony	12	12	0.226	1.61	8.46	10.3	15.8	33.7	10	0							
	Arsenic	12	12	31.3	466	1320	2400	3960	7100	2460	0							
	Cadmium	12	10	0.131	0.383	0.417	0.477	0.625	0.81	0.212	2	0.0871	0.0871	0.0872	0.0872	0.0873	0.0873	0.000141
	Chromium	12	12	2.25	4.83	6.65	6.91	8.57	11.9	2.74	0							
Ore Body Background (13)	Copper	12	12	16.5	106	196	274	415	690	223	0							
	Lead	12	12	57.5	3060	6170	8820	11100	27000	8760	0							
	Manganese	12	12	765	73800	206000	181000	271000	341000	116000	0							
	Selenium	12	12	0.264	0.336	0.432	0.504	0.555	1.07	0.252	0							
	Zinc	12	12	109	215	522	578	845	1310	407	0							

1. Percentiles computed using empirical distribution function with averaging (Hyndman Definition #2).

Note that ProUCL computes quartiles for fully detected data sets using linear interpolation of the modes for the order statistics on the uniform distribution [0,1] (Hyndman Definition #7). All concentrations reported in milligrams per kilogram.

TABLE 4
BACKGROUND THRESHOLD VALUES (BTVs)

					Max		
		No.	No.	No. Non-	Detect	Distribution of	
Lithology	Parameter	Samples	Detects	Detects	(mg/kg)	Detected Data	BTV ¹ (mg/kg)
	Antimony	18	18 14 4 18 18 6		0.456	Normal	0.443
	Arsenic	18	18	0	16.4	Lognormal ²	20.85
	Cadmium	18	12	6	0.203	Normal	0.188
	Chromium	18	18	0	12.8	Normal	16.2
Muddy Creek Formation (111)	Copper	18	18	0	16.1	Normal	17.65
	Lead	18	18	0	41.9	Normal	48.4
	Manganese	18	18	0	981	Normal	1069
	Selenium	18	15	3	0.486	Normal	0.571
	Zinc	18	18	0	81.5	Normal	99.11
	Antimony	22	8	14	0.624	Normal	0.627
	Arsenic	22	22	0	14.2	Normal	15.24
	Cadmium	22	7	15	0.184	Normal	0.171
	Chromium	22	22	0	9.13	Gamma (WH)	9.727
River Mountain Background (121)	Copper	22	22	0	22	Gamma (WH)	23.24
	Lead	21	21	0	30.9	Lognormal ²	29.83
	Manganese	20	20	0	474	Normal	481
	Selenium	22	22	0	0.877	Normal	0.962
	Zinc	22	22	0	48.8	Normal	52.96
	Antimony	12	12	0	33.7	Normal	37.73
	Arsenic	12	12	0	7100	Normal	9122
	Cadmium	12	10	2	0.81	Normal	1.053
	Chromium	12	12	0	11.9	Normal	14.39
Ore Body (13)	Copper	12	12	0	690	Normal	884.5
	Lead	12	12	0	27000	Normal	32785
	Manganese	12	12	0	341000	Normal	498434
	Selenium	12	12	0	1.07	Gamma (WH)	0.999
	Zinc	12	12	0	1310	Normal	1692

1 For parametric distributions, the BTV is the 95% Upper Tolerance Limit (UTL) with 95% coverage.

2 Skewness (standard deviation of logged data) < 1, so use of lognormal distribution is appropriate as per ProUCL version 5.1 recommendations. UTLs computed using ProUCL (version 5.1) with Kaplan-Meier estimation for data sets with non-detect results.

mg/kg = milligrams per kilogram.

	Sedimenta	ary Units of I	Downwind F	Parcels (112)	Mı	uddy Creek	Formation (111)	Generalized Wilcoxon Test				
Metal	n	No. Detects	Mean ^(a)	Median ^(a)	n	No. Detects	Mean ^(a)	Median ^(a)	Chi-Square	Pr > Chi-Square	Adjusted Pr > Chi-Square ^(b)	Conclusion ^(c)	
Antimony	5	3	0.243	0.225	18	14	0.24	0.204	0.05	0.8280	0.9555		
Arsenic	5	5	55	46	18	18	8.36	7.63	4.15	0.0417	0.0834		
Cadmium	5	4	0.442	0.533	18	12	0.113	0.102	2.18	0.1402	0.1402		
Chromium	5	5	11.5	10.6	18	18	8.82	8.69	0.93	0.3342	0.3342		
Copper	5	5	18.8	13.4	18	18	11.5	11.6	0.38	0.5355	0.5355		
Lead	5	5	334	244	18	18	20.6	19.7	2.68	0.1018	0.1018		
Manganese	5	5	3990	2630	18	18	502	473	0.25	0.6143	0.6143		
Selenium	5	5	0.517	0.397	18	15	0.332	0.359	6.02	0.0141	0.0423	*	
Zinc	5	5	211	182	18	18	47.2	42.6	5.00	0.0254	0.0254	*	

TABLE 5a STRATUM COMPARISONS - SEDIMENTARY UNITS OF DOWNWIND PARCELS VERSUS MUDDY CREEK FORMATION

(a) Kaplan-Meier product limit estimator used to compute the mean/median of data sets with non-detect.

(b) P-Value adjusted using the Benjamini-Hochberg procedure for controlling the false discovery rate.

(c) * = Data distributions are different at 95% significance level using adjusted P-value.

All concentrations reported in milligrams per kilogram.

TABLE 5b

STRATUM COMPARISONS - VOLCANIC UNITS OF DOWNWIND PARCELS VERSUS RIVER MOUNTAIN BACKGROUND

	Volcanio	: Units of Do	wnwind Pa	rcels (122)	Rive	r Mountain	Backgroun	d (121)	Generalized Wilcoxon Test					
		No.				No.				Pr >	Adjusted Pr >			
Metal	n	Detects	Mean ^(a)	Median ^(a)	n	Detects	Mean ^(a)	Median ^(a)	Chi-Square	Chi-Square	Chi-Square ^(b)	Conclusion ^(c)		
Antimony	9	2	0.167		22	8	0.266		0.00	0.9555	0.9555			
Arsenic	9	9	7.47	4.59	22	22	7.19	7.03	1.10	0.2942	0.2942			
Cadmium	9	4	0.108		22	7	0.102		2.19	0.1388	0.1402			
Chromium	9	9	10.4	8.62	22	22	4.09	3.82	11.70	0.0006	0.0019	*		
Copper	9	9	15.8	12.8	22	22	7.58	5.57	6.13	0.0133	0.0265	*		
Lead	9	9	33.7	18.9	21	21	11.5	9.03	10.20	0.0014	0.0028	*		
Manganese	9	9	317	234	20	20	253	252	3.21	0.0732	0.1465			
Selenium	9	9	0.782	0.827	22	22	0.499	0.516	0.17	0.6785	0.9475			
Zinc	9	9	124	90	22	22	26.1	23	18.30	0.0000	0.0001	*		

(a) Kaplan-Meier Product limit estimator used to compute the mean/median of data sets with non-detect.

(b) P-Value adjusted using Benjamini-Hochberg procedure for controlling the false discovery rate.

(c) * = Data distributions are different at 95% significance level using adjusted P-value.

All concentrations reported in milligrams per kilogram.

APPENDICES

APPENDIX A

Summary Statistics for Raw Data and Comparison of Sample Quantitation Limits

TABLE A.1 SUMMARY STATISTICS FOR RAW DATA

					Analysis of Detected Results									
											Potential Outlier			
Lithology	Stratum	Analyte	Unit	Ν	No. Detects	Min	Max	Median	Q _n ¹	S(Q _n) ¹	Threshold ¹			
	111	Antimony	mg/kg	23	19	0.171	0.75	0.23	0.075545	0.07036	0.47626			
	111	Arsenic	mg/kg	23	23	3.69	48.8	7.79	3.0218	2.8484	17.759			
	111	Cadmium	mg/kg	23	14	0.0952	0.203	0.1245	0.031107	0.024466	0.21013			
Muddy Crook	111	Chromium	mg/kg	23	23	3.06	20.7	9.17	4.666	4.3983	24.564			
Formation	111	Copper	mg/kg	23	23	7.17	38.6	12.7	4.666	4.3983	28.094			
	111	Lead	mg/kg	23	23	3.25	88.2	23.4	17.664	16.651	81.677			
	111	Manganese	mg/kg	23	23	137	1670	518	324.4	305.78	1588.2			
	111	Selenium	mg/kg	23	20	0.187	0.486	0.363	0.10221	0.085889	0.66361			
	111	Zinc	mg/kg	23	23	18.4	165	49.4	27.329	25.761	139.56			
	13	Antimony	mg/kg	13	13	0.226	33.7	10.2	10.91	9.8489	44.671			
	13	Arsenic	mg/kg	13	13	31.3	20000	1430	2478.3	2237.4	9260.8			
	13	Cadmium	mg/kg	13	11	0.131	0.81	0.397	0.31107	0.27595	1.3628			
Ore Body	13	Chromium	mg/kg	13	13	2.25	11.9	6.37	3.3995	3.069	17.111			
Background	13	Copper	mg/kg	13	13	16.5	690	213	253.3	228.67	1013.3			
Dackground	13	Lead	mg/kg	13	13	57.5	27000	7570	7582.2	6845.1	31528			
	13	Manganese	mg/kg	13	13	765	341000	205000	108870	98288	549010			
	13	Selenium	mg/kg	13	13	0.264	1.07	0.418	0.1622	0.14643	0.9305			
	13	Zinc	mg/kg	13	13	109	1310	646	422.16	381.12	1979.9			
	121	Antimony	mg/kg	27	10	0.178	0.624	0.399	0.24885	0.18033	1.0301			
	121	Arsenic	mg/kg	27	27	1.51	14.2	6.67	3.4217	3.253	18.056			
	121	Cadmium	mg/kg	27	10	0.095	0.184	0.117	0.039994	0.028981	0.21843			
River	121	Chromium	mg/kg	27	27	1.37	17.9	4.18	2.3552	2.2391	12.017			
Mountain	121	Copper	mg/kg	27	27	2.46	42.1	6.05	5.7103	5.4288	25.051			
Background	121	Lead	mg/kg	27	27	5.11	42.8	9.91	5.3326	5.0697	27.654			
	121	Manganese	mg/kg	27	27	111	802	253	126.65	120.41	674.42			
	121	Selenium	mg/kg	27	27	0.214	1.43	0.544	0.25996	0.24715	1.409			
	121	Zinc	mg/kg	27	27	11.3	230	32.5	17.109	16.265	89.428			
	112	Antimony	mg/kg	5	3	0.225	0.369	0.285	0.13331	0.13251	0.7488			
	112	Arsenic	mg/kg	5	5	8.51	156	46	71.99	60.759	258.66			
Sedimentary	112	Cadmium	mg/kg	5	4	0.467	0.588	0.535	0.1222	0.062569	0.75399			
Units of	112	Chromium	mg/kg	5	5	9.14	14.4	10.6	3.1107	2.6254	19.789			
Downwind	112	Copper	mg/kg	5	5	9.51	40.8	13.4	8.6432	7.2949	38.932			
Parcels	112	Lead	mg/kg	5	5	18	1060	244	381.06	321.61	1369.6			
	112	Manganese	mg/kg	5	5	330	13300	2630	4294.9	3624.9	15317			
	112	Selenium	mg/kg	5	5	0.34	0.786	0.397	0.12665	0.10689	0.77112			
	112	Zinc	mg/kg	5	5	140	324	182	93.32	78.762	457.67			
	122	Antimony	mg/kg	9	2	0.167	0.177	0.172	0.022219	0.0088654	0.20303			
	122	Arsenic	mg/kg	9	9	3.53	13.6	4.59	2.2219	1.9375	11.371			
	122	Cadmium	mg/kg	9	4	0.0872	0.171	0.143	0.077767	0.039816	0.28236			
Volcanic Units	122	Chromium	mg/kg	9	9	0.994	22.3	8.62	8.6654	7.5562	35.067			
of Downwind	122	Copper	mg/kg	9	9	2.25	35.5	12.8	14.665	12.787	57.556			
Parcels	122	Lead	mg/kg	9	9	7.39	85.4	18.9	21.552	18.794	84.678			
	122	Manganese	mg/kg	9	9	109	637	234	179.97	156.94	783.28			
	122	Selenium	mg/kg	9	9	0.202	1.41	0.827	0.26663	0.2325	1.6407			
	122	Zinc	mg/kg	9	9	11.4	481	90	66.657	58.125	293.44			

1. Potential outliers defined as detected concentrations exceeding the median + $3.5*S(Q_n)$.

The statistic Qn is a robust bias-corrected estimate of the sample standard deviation (Rousseeuw and Croux, 1993).

TABLE A.2 COMPARISON OF SAMPLE QUANTITATION LIMITS TO RISK-BASED SCREENING LEVELS

			Detected Data			No					
		No.									Residential
Lithology	Parameter	Samples	FOD	Min	Max	Median	Mean	Min	Mean	Max	Soil RSL ¹
	Antimony	23	19/23	0.171	0.75		0.284	0.168	0.169	0.17	3.1
	Arsenic	23	23/23	3.69	48.8		10.4				0.68
	Cadmium	23	14/23	0.0952	0.203		0.127	0.0864	0.0878	0.0907	0.71
Muddy Creek Formation (111)	Chromium	23	23/23	3.06	20.7		9.46				12,000
	Copper	23	23/23	7.17	38.6		15.5				310
	Lead	23	23/23	3.25	88.2		27.3				400
	Manganese	23	23/23	137	1670		619				180
	Selenium	23	20/23	0.187	0.486		0.352	0.183	0.184	0.184	39
	Zinc	23	23/23	18.4	165		58.3				2,300
	Antimony	5	3/5	0.225	0.369		0.293	0.169	0.171	0.173	3.1
	Arsenic	5	5/5	8.51	156		55				0.68
	Cadmium	5	4/5	0.467	0.588		0.531	0.0872	0.0872	0.0872	0.71
	Chromium	5	5/5	9.14	14.4		11.5				12,000
	Copper	5	5/5	9.51	40.8		18.8				310
	Lead	5	5/5	18	1060		334				400
	Manganese	5	5/5	330	13300		3990				180
	Selenium	5	5/5	0.34	0.786		0.517				39
Sedimentary Units of	Zinc	5	5/5	140	324		211				2,300
Downwind Parcels (112)	Benzo[a]anthracene	5	3/5	0.013	0.0192		0.0158	0.00177	0.001785	0.0018	1.1
	Benzo[a]pyrene	5	3/5	0.0131	0.0198		0.0159	0.00183	0.00185	0.00187	0.11
	Benzo[b]fluoranthene	5	3/5	0.0179	0.0322		0.0262	0.00156	0.00158	0.0016	1.1
	Benzo[g,h,i]perylene	5	3/5	0.0159	0.0215		0.0195	0.00181	0.00183	0.00185	180
	Chrysene	5	3/5	0.0359	0.0476		0.0400	0.00237	0.002395	0.00242	110
	Dibenzo[a,h]anthracene	5	3/5	0.00659	0.00781		0.00707	0.00175	0.00177	0.00179	0.11
	Indeno[1,2,3-cd]pyrene	5	3/5	0.0101	0.0169		0.0138	0.00185	0.00187	0.00189	1.1
	Phenanthrene	5	3/5	0.0053	0.00692		0.0061	0.00236	0.002385	0.00241	1,800
	Pyrene	5	3/5	0.0148	0.0285		0.0202	0.00204	0.002065	0.00209	180
	Antimony	27	10/27	0.178	0.624		0.398	0.166	0.167	0.17	3.1
	Arsenic	27	27/27	1.51	14.2		6.92				0.68
	Cadmium	27	10/27	0.095	0.184		0.127	0.0857	0.086	0.0874	0.71
Diver Meyetein Deckersund	Chromium	27	27/27	1.37	17.9		5.53				12,000
(121)	Copper	27	27/27	2.46	42.1		12.0				310
(121)	Lead	27	27/27	5.11	42.8		13.5				400
	Manganese	27	27/27	111	802		293				180
	Selenium	27	27/27	0.214	1.43		0.582				39
	Zinc	27	27/27	11.3	230		40.9				2,300
	Antimony	9	2/9	0.167	0.177		0.172	0.166	0.167	0.17	3.1
	Arsenic	9	9/9	3.53	13.6		7.47				0.68
	Cadmium	9	4/9	0.0872	0.171		0.136	0.0856	0.0863	0.0874	0.71
	Chromium	9	9/9	0.994	22.3		10.4				12,000
	Copper	9	9/9	2.25	35.5		15.8				310
	Lead	9	9/9	7.39	85.4		33.7				400
	Manganese	9	9/9	109	637		317				180
	Selenium	9	9/9	0.202	1.41		0.782				39
Volcanic Units of Downwind	Zinc	9	9/9	11.4	481		124				2,300
Parcels (122)	Benzo[a]anthracene	9	3/9	0.00323	0.00973		0.00603	0.00174	0.001743	0.00175	1.1
	Benzo[a]pyrene	9	3/9	0.00202	0.00474		0.00330	0.0018	0.001805	0.00181	0.11
	Benzo[b]fluoranthene	9	5/9	0.00205	0.0241		0.0102	0.00154	0.001543	0.00155	1.1
	Benzo[g,h,i]perylene	9	6/9	0.0019	0.0186		0.0075	0.00178	0.001783	0.00179	180
	Chrysene	9	7/9	0.00361	0.0331		0.0116	0.0023	0.00232	0.00234	110
	Dibenzo[a,h]anthracene	9	3/9	0.00238	0.0068		0.00428	0.00173	0.001733	0.00174	0.11
	Indeno[1,2,3-cd]pyrene	9	4/9	0.00196	0.0144		0.00781	0.00182	0.001824	0.00183	1.1
	Phenanthrene	9	3/9	0.00258	0.00598		0.00421	0.00232	0.002328	0.00234	1,800
	Pyrene	9	7/9	0.00208	0.0164		0.00609	0.00201	0.00201	0.00201	180
	Antimony	13	13/13	0.226	33.7		11.1				3.1
	Arsenic	13	13/13	31.3	20000		3752				0.68
	Cadmium	13	11/13	0.131	0.81		0.454	0.0871	0.0872	0.0873	0.71
	Chromium	13	13/13	2.25	11.9		6.73				12,000
Ore Body Background (13)	Copper	13	13/13	16.5	690		290				310
	Lead	13	13/13	57.5	27000		9218				400
	Manganese	13	13/13	765	341000		183005				180
	Selenium	13	13/13	0.264	1.07		0.495				39
	Zinc	13	13/13	109	1310		590				2,300

All concentrations reported in milligrams per kilogram.

¹ USEPA Regional Screening Level (RSL) for Residential Soil (TR=1E-06, HQ=0.1), November 2021.

Surrogates used: chromium III for chromium, pyrene for benzo(g,h,i)perylene, and anthracene for phenanthrene.

APPENDIX B

Q-Q Plots

APPENDIX C

Side by Side Box Plots

APPENDIX D

ProUCL Outputs
Background Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation	ProUCL 5.110/21/2021 8:37:24 PM
From File	proucl_data.xls
Full Precision	OFF
Confidence Coefficient	95%
Coverage	95%
rent or Future K Observations	1
mber of Bootstrap Operations	2000

Result (antimony)

General Statistics

Total Number of Observations	18	Number of Missing Observations	0
Number of Distinct Observations	16		
Number of Detects	14	Number of Non-Detects	4
Number of Distinct Detects	13	Number of Distinct Non-Detects	3
Minimum Detect	0.177	Minimum Non-Detect	0.168
Maximum Detect	0.456	Maximum Non-Detect	0.17
Variance Detected	0.00737	Percent Non-Detects	22.22%
Mean Detected	0.261	SD Detected	0.0859
Mean of Detected Logged Data	-1.388	SD of Detected Logged Data	0.305

Critical Values for Background Threshold Values (BTVs)

Tolerance Factor K (For UTL) 2.453 d2max (for USL) 2.504

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.874	Shapiro Wilk GOF Test		
5% Shapiro Wilk Critical Value	0.874	Data Not Normal at 5% Significance Level		
Lilliefors Test Statistic	0.212	Lilliefors GOF Test		
5% Lilliefors Critical Value	0.226	Detected Data appear Normal at 5% Significance Level		
Detected Data appear Approximate Normal at 5% Significance Level				

Kaplan Meier (KM) Background Statistics Assuming Normal Distribution

KM Mean	0.24	KM SD	0.0826
95% UTL95% Coverage	0.443	95% KM UPL (t)	0.388
90% KM Percentile (z)	0.346	95% KM Percentile (z)	0.376
99% KM Percentile (z)	0.432	95% KM USL	0.447

DL/2 Substitution Background Statistics Assuming Normal Distribution

Mean	0.222	SD	0.106
95% UTL95% Coverage	0.483	95% UPL (t)	0.412
90% Percentile (z)	0.358	95% Percentile (z)	0.397
99% Percentile (z)	0.47	95% USL	0.488

DL/2 is not a recommended method. DL/2 provided for comparisons and historical reasons

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.562	Anderson-Darling GOF Test
5% A-D Critical Value	0.734	etected data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.195	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.229	etected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

11.22	k star (bias corrected MLE)	8.864
0.0233	Theta star (bias corrected MLE)	0.0294
314.2	nu star (bias corrected)	248.2
0.261		
0.0877	95% Percentile of Chisquare (2kstar)	28.52
	11.22 0.0233 314.2 0.261 0.0877	11.22k star (bias corrected MLE)0.0233Theta star (bias corrected MLE)314.2nu star (bias corrected)0.2610.087795% Percentile of Chisquare (2kstar)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20) For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates Mean 0.223

Minimum 0.0705

Maximum	0.456	Median	0.204
SD	0.105	CV	0.473
k hat (MLE)	4.39	k star (bias corrected MLE)	3.696
Theta hat (MLE)	0.0507	Theta star (bias corrected MLE)	0.0603
nu hat (MLE)	158.1	nu star (bias corrected)	133
MLE Mean (bias corrected)	0.223	MLE Sd (bias corrected)	0.116
95% Percentile of Chisquare (2kstar)	14.63	90% Percentile	0.378
95% Percentile	0.441	99% Percentile	0.576
The following statistics are c	omputed usi	ng Gamma ROS Statistics on Imputed Data	
Upper Limits using Wilse	on Hilferty (V	VH) and Hawkins Wixley (HW) Methods	
WH	HW	WH	HW
Approx. Gamma UTL with 95% Coverage 0.581	0.605	95% Approx. Gamma UPL 0.454	0.463
95% Gamma USL 0.592	0.617		
Estimates of	Gamma Para	ameters using KM Estimates	
Mean (KM)	0.24	SD (KM)	0.0826
Variance (KM)	0.00682	SE of Mean (KM)	0.0202
k hat (KM)	8.468	k star (KM)	7.094
nu hat (KM)	304.8	nu star (KM)	255.4
theta hat (KM)	0.0284	theta star (KM)	0.0339
80% gamma percentile (KM)	0.311	90% gamma percentile (KM)	0.361
95% gamma percentile (KM)	0.405	99% gamma percentile (KM)	0.498
The following statistics are	computed us	sing gamma distribution and KM estimates	
Upper Limits using Wilso	on Hilferty (V	VH) and Hawkins Wixley (HW) Methods	
WH	HW	WH	HW
Approx. Gamma UTL with 95% Coverage 0.466	0.47	95% Approx. Gamma UPL 0.391	0.392
95% KM Gamma Percentile 0.377	0.377	95% Gamma USL 0.472	0.476
L ognormal G	OE Test on I	Retected Observations Only	
Shapiro Wilk Test Statistic	0.914	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.874	Detected Data appear Lognormal at 5% Significance	e Level
Lilliefors Test Statistic	0.177	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.226	Detected Data appear Lognormal at 5% Significance	e Level
Detected Data a	appear Logn	ormal at 5% Significance Level	
Background Lognormal ROS Statistic	cs Assuming	Lognormal Distribution Using Imputed Non-Detects	
Mean in Original Scale	0.23	Mean in Log Scale	-1.548
SD in Original Scale	0.0959	SD in Log Scale	0.408
95% UTL95% Coverage	0.578	95% BCA UTL95% Coverage	0.456
95% Bootstrap (%) UTL95% Coverage	0.456	95% UPL (t)	0.441
90% Percentile (z)	0.359	95% Percentile (2)	0.410
	0.549	93 % 03L	0.59
Statistics using KM estimate	s on Loaaed	Data and Assuming Lognormal Distribution	
KM Mean of Logged Data	-1.476	95% KM UTL (Lognormal)95% Coverage	0.485
KM SD of Logged Data	0.307	95% KM UPL (Lognormal)	0.395
95% KM Percentile Lognormal (z)	0.378	95% KM USL (Lognormal)	0.492
Background DL/2	2 Statistics A	ssuming Lognormal Distribution	
Mean in Original Scale	0.222	Mean in Log Scale	-1.629
SD in Original Scale	0.106	SD in Log Scale	0.534
95% UTL95% Coverage	0.727	95% UPL (t)	0.51
90% Percentile (z)	0.389	95% Percentile (z)	0.472
99% Percentile (z)	thod DL /2 ~	95% USL	0.747
	מ בוטע. עניע מוטע מוטע	rovideu for compansons and filstorical reasons.	
Nonparametri	c Distributio	n Free Background Statistics	
Data appear to follow a	Discernible	Distribution at 5% Significance Level	
		-	
Nonparametric Upper Limits for	BTVs(no dis	tinction made between detects and nondetects)	
Order of Statistic, r	18	95% UTL with95% Coverage	0.456

 Approx, f used to compute achieved CC
 0.947
 imate Actual Confidence Coefficient achieved by UTL
 0.603

 vximate Sample Size needed to achieve specified CC
 59
 95% UPL
 0.456

 95% USL
 0.456
 95% KM Chebyshev UPL
 0.61

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.

Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV.

Result (arsenic)

General Statistics			
Total Number of Observations	18	Number of Distinct Observations	17
Minimum	3.69	First Quartile	6.473
Second Largest	16.4	Median	7.63
Maximum	16.4	Third Quartile	8.223
Mean	8.361	SD	3.75
Coefficient of Variation	0.449	Skewness	1.362
Mean of logged Data	2.042	SD of logged Data	0.406
Critical Values	for Backgroui	nd Threshold Values (BTVs)	
Tolerance Factor K (For UTL)	2.453	d2max (for USL)	2.504
	Normal G	GOF Test	
Shapiro Wilk Test Statistic	0.803	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.897	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.285	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.202	Data Not Normal at 5% Significance Level	
Data No	t Normal at 5	% Significance Level	
Background S	Statistics Ass	uming Normal Distribution	
95% UTL with 95% Coverage	17.56	90% Percentile (z)	13.17
95% UPL (t)	15.06	95% Percentile (z)	14.53
95% USL	17.75	99% Percentile (z)	17.08
	Gamma C	GOF Test	
A-D Test Statistic	0.964	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.742	Data Not Gamma Distributed at 5% Significance I	_evel
K-S Test Statistic	0.233	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value Data Not Gam	0.204 ma Distribute	Data Not Gamma Distributed at 5% Significance L ad at 5% Significance Level	_evel
	_		
k hat (MLE)	Gamma \$	Statistics k star (bias corrected MLE)	5 264
Theta hat (MLE)	1 333	Theta star (bias corrected MLE)	1 588
nu hat (MLE)	225.8	nu star (bias corrected)	189.5
MLE Mean (bias corrected)	8.361	MLE Sd (bias corrected)	3.644
Background S	Statistics Assu	uming Gamma Distribution	
95% Wilson Hilferty (WH) Approx. Gamma UPL	15.42	90% Percentile	13.24
95% Hawkins Wixley (HW) Approx. Gamma UPL	15.52	95% Percentile	15.11
95% WH Approx. Gamma UTL with 95% Coverage	19.12	99% Percentile	19.07
95% HW Approx. Gamma UTL with 95% Coverage	19.46		10 70
95% WH USL	19.43	95% HW USL	19.79
	Lognormal	GOF Test	
Shapiro Wilk Test Statistic	0.914	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.897	Data appear Lognormal at 5% Significance Lev	/el
	0.206	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value Data appear Appro	0.202 Distimate Logn	Data Not Lognormal at 5% Significance Leve ormal at 5% Significance Level	I
- · · · ·			
Background St	20 25	ning Lognormal Distribution	12.06
	20.00		12.90
	21.29	90% Forcentile (2) 90% Percentile (2)	19.02
55% 05E	21.20		10.0

Nonparametric Distribution Free Background Statistics

Data appear Approximate Lognormal at 5% Significance Level

Nonparametric Upper Limits for Background Threshold Values

Order of Statistic, r	18	95% UTL with 95% Coverage	16.4
Approx, f used to compute achieved CC	0.947	imate Actual Confidence Coefficient achieved by UTL	0.603
		ximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	16.4	95% BCA Bootstrap UTL with 95% Coverage	16.4
95% UPL	16.4	90% Percentile	15.35
90% Chebyshev UPL	19.92	95% Percentile	16.4
95% Chebyshev UPL	25.15	99% Percentile	16.4
95% USL	16.4		

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations.

The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV.

Result (cadmium)

	Genera	al Statistics	
Total Number of Observations	18	Number of Missing Observations	0
Number of Distinct Observations	16		
Number of Detects	12	Number of Non-Detects	6
Number of Distinct Detects	12	Number of Distinct Non-Detects	4
Minimum Detect	0.0952	Minimum Non-Detect	0.0867
Maximum Detect	0.203	Maximum Non-Detect	0.0897
Variance Detected 9	9.6243E-4	Percent Non-Detects	33.33%
Mean Detected	0.126	SD Detected	0.031
Mean of Detected Logged Data	-2.095	SD of Detected Logged Data	0.226
Critical Values f	or Backgro	ound Threshold Values (BTVs)	
Tolerance Factor K (For UTL)	2.453	d2max (for USL)	2.504
Norm	nal GOF To	est on Detects Only	
Shapiro Wilk Test Statistic	0.862	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.859	Detected Data appear Normal at 5% Significance L	_evel
Lilliefors Test Statistic	0.16	Lilliefors GOF Test	
5% Lilliefors Critical Value 0.243 Detected Data appear Normal at 5% Significance Level			
Detected Data	appear No	rmal at 5% Significance Level	
Kaplan Meier (KM) Baci	kground S	tatistics Assuming Normal Distribution	0 0005
KM Mean	0.113	KM SD	0.0305
95% UTL95% Coverage	0.188	95% KM OPL (t)	0.108
90% KM Percentile (z)	0.152	95% KM Percentile (Z)	0.163
99% KM Percentile (Z)	0.184	95% KM USL	0.189
DL/2 Substitution Back	ground St	atistics Assuming Normal Distribution	
Mean	0.0987	SD	0.0471
95% UTL95% Coverage	0.214	95% UPL (t)	0.183
90% Percentile (z)	0.159	95% Percentile (z)	0.176
99% Percentile (z)	0.208	95% USL	0.217
DL/2 is not a recommended meth	od. DL/2 p	provided for comparisons and historical reasons	
Gamma GOF	Tests on	Detected Observations Only	
A-D Test Statistic	0.442	Anderson-Darling GOF Test	
5% A-D Critical Value	0.732	etected data appear Gamma Distributed at 5% Signification	ance Leve
K-S Test Statistic	0.171	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.245	etected data appear Gamma Distributed at 5% Signification	ance Leve
Detected data appear	r Gamma I	Distributed at 5% Significance Level	
-			
Gamma	STATISTICS	on Detected Data Univ	

Gamma	01000000		
k hat (MLE)	20.47	k star (bias corrected MLE)	15.41
Theta hat (MLE)	0.00616	Theta star (bias corrected MLE)	0.00818
nu hat (MLE)	491.4	nu star (bias corrected)	369.9
MLE Mean (bias corrected)	0.126		
MLE Sd (bias corrected)	0.0321	95% Percentile of Chisquare (2kstar)	44.77

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects	s is smal	I such	as <1.0, especially when the sample size is small (e.g., <15 $$	-20)
For such situations, GR	OS meth	iod ma	ay yield incorrect values of UCLs and BTVs	
This is es	pecially t	true wl	hen the sample size is small.	
For gamma distributed detected data, BTV	vs and U	JCLs n	nay be computed using gamma distribution on KM estimates	
Minimu	ım 0.0	0496	Mean	0.104
Maximu	ım 0.	.203	Median	0.102
S	SD 0.0	0413	CV	0.398
k hat (ML	E) 6.	.621	k star (bias corrected MLE)	5.554
I heta hat (ML	E) 0.0	0157	Theta star (bias corrected MLE)	0.0187
nu nat (ML MLE Maan (biga gerrete	E) 238	3.3	nu star (bias corrected)	199.9
MLE Mean (blas correcte	(1) U.	.104	MLE SG (blas corrected)	0.044
95% Percentile of Chisquare (28sta	ar) is ilo 0	195	90% Percentile	0.103
		tod ue	ing Gamma BOS Statistics on Imputed Data	0.232
Linner Limits using Wi	ilson Hilf	fertv ()	WH) and Hawkins Wixley (HW) Methods	
WH	ни	V	WH	нw
Approx. Gamma UTL with 95% Coverage 0.23	33 0.	.239	95% Approx. Gamma UPL 0.189	0.191
95% Gamma USL 0.23	37 0.	.243	·····	
Estimates	of Gamm	na Par	rameters using KM Estimates	
Mean (KI	M) 0.	.113	SD (KM)	0.0305
Variance (KI	M) 9.332	27E-4	SE of Mean (KM)	0.00752
k hat (KI	M) 13	8.68	k star (KM)	11.43
nu hat (KI	M) 492	2.3	nu star (KM)	411.6
theta hat (KI	M) 0.0	0826	theta star (KM)	0.00988
80% gamma percentile (KI	M) 0.	.14	90% gamma percentile (KM)	0.157
95% gamma percentile (KI	M) 0.	.173	99% gamma percentile (KM)	0.205
The following statistics and	re comp	uted u	using gamma distribution and KM estimates	
Upper Limits using Wi	ilson Hill	ferty (\	WH) and Hawkins Wixley (HW) Methods	
WH	HV	V 101	WH	HW
Approx. Gamma UTL with 95% Coverage 0.19	13 U.	.194	95% Approx. Gamma UPL 0.168	0.168
95% Kin Gamma Percentile 0.10	55 0.	.105	95% Gamma USL 0.196	0.197
Lognormal	GOF Te	est on	Detected Observations Only	
Shapiro Wilk Test Statis	tic 0.	.915	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Valu	ue 0.	.859	Detected Data appear Lognormal at 5% Significance	e Level
Lilliefors Test Statis	tic 0.	.162	Lilliefors GOF Test	
5% Lilliefors Critical Value	ue 0.	.243	Detected Data appear Lognormal at 5% Significance	e Level
Detected Data	a appea	r Logr	normal at 5% Significance Level	
Background Lognormal ROS Statis	stics Ass	suming	g Lognormal Distribution Using Imputed Non-Detects	
Mean in Original Sca	ale 0.	.108	Mean in Log Scale	-2.281
SD in Original Sca	ale 0.0	0368	SD in Log Scale	0.328
95% UTL95% Coverage	ge 0.	.228	95% BCA UTL95% Coverage	0.203
95% Bootstrap (%) UTL95% Coverage	ge 0.	.203	95% UPL (t)	0.184
90% Percentile ((z) 0.	.156	95% Percentile (z)	0.175
99% Percentile ((z) 0.	.219	95% USL	0.232
Statistics using KM estima	+00 00 l		d Data and Assuming Lagnarmal Distribution	
Statistics using KM estima		.ogget 212	0.5% KM LITL (Lognormal)05% Coverage	0 109
KM SD of Logged Da	nta - 2	212	95% KM LIPL (Lognormal)	0.190
95% KM Percentile Lognormal ((z) 0	163	95% KM USL (Lognormal)	0.103
	(2) 0.	. 100		0.2
Background D	L/2 Stati	stics A	Assuming Lognormal Distribution	
Mean in Original Sca	ale 0.0	0987	Mean in Log Scale	-2.439
SD in Original Sca	ale 0.0	0471	SD in Log Scale	0.533
95% UTL95% Coverad	ge 0.	.322	95% UPL (t)	0.226
90% Percentile ((z) 0.	.173	95% Percentile (z)	0.209
99% Percentile ((z) 0.	.301	95% USL	0.331
DL/2 is not a Recommended M	/lethod.	DL/2 p	provided for comparisons and historical reasons.	
Nonparame	etric Dist	ributic	on Free Background Statistics	

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects)

Order of Statistic, r	18	95% UTL with95% Coverage	0.203
	10	oo /o o r E maioo /o oo roidge	0.200

Approx, f used to compute achieved CC	0.947	imate Actual Confidence Coefficient achieved by UTL	0.603
ximate Sample Size needed to achieve specified CC 95% USL	59 0.203	95% UPL 95% KM Chebyshev UPL	0.203 0.25
Note: The use of USL tends to yield a conserva Therefore, one may use USL to estimate a BTV and consists of observ The use of USL tends to provide a bala	tive estimate ' only when t ations collec nce betweer	of BTV, especially when the sample size starts exceeding he data set represents a background data set free of outlie ted from clean unimpacted locations.	20. ers
represents a background data set and w	when many o	nsite observations need to be compared with the BTV.	
Result (chromium)			
General Statistics			
Total Number of Observations	18	Number of Distinct Observations	18
Minimum	3.28	First Quartile	7.11
Second Largest	12.5	Median	8.69
Maximum	12.8	Third Quartile	11.18
Mean Coofficient of Veriation	8.817	SD	3.009
Mean of logged Data	2.106	Shewness SD of logged Data	-0.448 0.416
Critical Values	for Backgrou	und Threshold Values (BTVs)	
Tolerance Factor K (For UTL)	2.453	d2max (for USL)	2.504
	Normal	GOF Test	
Shapiro Wilk Test Statistic	0.937	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.897	Data appear Normal at 5% Significance Leve	1
Lilliefors Test Statistic	0.133	Lilliefors GOF Test	
5% Lilliefors Critical Value Data appe	0.202 ear Normal a	Data appear Normal at 5% Significance Leve t 5% Significance Level	1
		, , , , , , , , , , , , , , , , , , ,	
Background \$ 95% UTL with 95% Coverage	Statistics As 16.2	suming Normal Distribution 90% Percentile (z)	12.67
95% UPL (t)	14.19	95% Percentile (z)	13.77
95% USL	16.35	99% Percentile (z)	15.82
	Gamma	GOF Test	
A-D Test Statistic	0.596	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.741	etected data appear Gamma Distributed at 5% Signific	ance Leve
K-S Test Statistic	0.154	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.204	etected data appear Gamma Distributed at 5% Signific	ance Leve
Detected data appea	ir Gamma D	Istributed at 5% Significance Level	
	Gamma	Statistics	
k hat (MLE)	1.23/	k star (bias corrected MLE)	0.068
i neta nat (MLE) pu hat (MLE)	1.∠1ð 260.5	nu star (bias corrected)	1.403 218 5
MLE Mean (bias corrected)	8.817	MLE Sd (bias corrected)	3.579
Background S	Statistics As	suming Gamma Distribution	
95% Wilson Hilferty (WH) Approx. Gamma UPL	15.73	90% Percentile	13.6
95% Hawkins Wixley (HW) Approx. Gamma UPL	16.04	95% Percentile	15.41
95% WH Approx. Gamma UTL with 95% Coverage	19.27	99% Percentile	19.19
95% HW Approx. Gamma UTL with 95% Coverage 95% WH USL	19.94 19.56	95% HW USL	20.26
Choose Wills Test Or College	Lognorma	II GUF 18St Shenire Wilk Legnarmal COF Tast	
Snapiro Wilk Lest Statistic	0.87 0.807	Snapiro Wilk Lognormal GUF Test	
5 / Shapiru Wilk Chucal Value	0.097	Lilliefore Lognormal COF Test	•
5% Lilliefors Critical Value	0.202	Data appear Loanormal at 5% Significance Lev	/el
Data appear Appro	oximate Log	normal at 5% Significance Level	
Background St	atistics assu	Iming Lognormal Distribution	

95% UTL with	95% Coverage	22.78	90% Percentile (z)	14
	95% UPL (t)	17.27	95% Percentile (z)	16.28
	95% USL	23.27	99% Percentile (z)	21.61

Nonparametric Distribution Free Background Statistics Data appear Normal at 5% Significance Level

Nonparametric Upper Limits for Background Threshold Values

Order of Statistic, r	18	95% UTL with 95% Coverage	12.8
Approx, f used to compute achieved CC	0.947	imate Actual Confidence Coefficient achieved by UTL	0.603
		ximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	12.8	95% BCA Bootstrap UTL with 95% Coverage	12.8
95% UPL	12.8	90% Percentile	12.43
90% Chebyshev UPL	18.09	95% Percentile	12.55
95% Chebyshev UPL	22.29	99% Percentile	12.75
95% USL	12.8		

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations.

The use of USL tends to provide a balance between false positives and false negatives provided the data

represents a background data set and when many onsite observations need to be compared with the BTV.

Result (copper)

General Statistics				
	Total Number of Observations	18	Number of Distinct Observations	18
	Minimum	7.17	First Quartile	9.533
	Second Largest	15.3	Median	11.6
	Maximum	16.1	Third Quartile	13.35
	Mean	11.53	SD	2.496
	Coefficient of Variation	0.216	Skewness	-0.0242
	Mean of logged Data	2.422	SD of logged Data	0.226

Critical Values for Background Threshold Values (BTVs)

Tolerance Factor K (For UTL) 2.453

Normal GOF Test

Shapiro Wilk Test Statistic	0.977	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.897	Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic	0.102	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.202	Data appear Normal at 5% Significance Level	
Data appear Normal at 5% Significance Level			

d2max (for USL)

2.504

Background Statistics Assuming Normal Distribution

95% UTL with 95	5% Coverage	17.65	90% Percentile (z)	14.73
	95% UPL (t)	15.99	95% Percentile (z)	15.64
	95% USL	17.78	99% Percentile (z)	17.34

Gamma GOF Test

0.253	Anderson-Darling Gamma GOF Test
0.739	etected data appear Gamma Distributed at 5% Significance Leve
0.103	Kolmogorov-Smirnov Gamma GOF Test
0.203	Petected data appear Gamma Distributed at 5% Significance Leve
	0.253 0.739 0.103 0.203

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	21.59	k star (bias corrected MLE)	18.03
Theta hat (MLE)	0.534	Theta star (bias corrected MLE)	0.64
nu hat (MLE)	777.1	nu star (bias corrected)	648.9
MLE Mean (bias corrected)	11.53	MLE Sd (bias corrected)	2.716

Background Statistics Assuming Gamma Distribution

95% Wilson Hilferty (WH) Approx. Gamma UPL	16.5	90% Percentile	15.12
95% Hawkins Wixley (HW) Approx. Gamma UPL	16.58	95% Percentile	16.33
95% WH Approx. Gamma UTL with 95% Coverage	18.75	99% Percentile	18.77
95% HW Approx. Gamma UTL with 95% Coverage	18.94		
95% WH USL	18.93	95% HW USL	19.13

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.964	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.897	Data appear Lognormal at 5% Significance Leve	el
Lilliefors Test Statistic	0.117	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.202	Data appear Lognormal at 5% Significance Leve	el
Data appear	Lognormal	at 5% Significance Level	
Background Sta	itistics assu	iming Lognormal Distribution	
95% UTL with 95% Coverage	19.61	90% Percentile (z)	15.05
95% UPL (t)	16.87	95% Percentile (z)	16.33
95% USL	19.83	99% Percentile (z)	19.05
Nonparametric Data appe	Distributior ar Normal a	n Free Background Statistics t 5% Significance Level	
Nonparametric Upp	oer Limits fo	or Background Threshold Values	
Order of Statistic, r	18	95% UTL with 95% Coverage	16.1
Approx, f used to compute achieved CC	0.947	imate Actual Confidence Coefficient achieved by UTL	0.603
		ximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	16.1	95% BCA Bootstrap UTL with 95% Coverage	16.1
95% UPL	16.1	90% Percentile	14.18
90% Chebyshev UPL	19.22	95% Percentile	15.42
95% Chebyshev UPL	22.71	99% Percentile	15.96
95% USL	16.1		

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations.

The use of USL tends to provide a balance between false positives and false negatives provided the data

represents a background data set and when many onsite observations need to be compared with the BTV.

Result (lead)

General Statistics

25 65 23 33 108
65 23 33 108 66
23 33 108 166
33 108 166
308 366
666
604
13
24
96
Leve
Leve
06
06 24

MLE Mean (bias corrected)	20.61	MLE Sd (bias corrected) 13.02
Background St	atistics As	suming Gamma Distribution
95% Wilson Hilferty (WH) Approx. Gamma UPL	47.28	90% Percentile 38.05
95% Hawkins Wixley (HW) Approx. Gamma UPL	48.91	95% Percentile 45.6
95% WH Approx. Gamma UTL with 95% Coverage	63	99% Percentile 62.12
95% HW Approx. Gamma UTL with 95% Coverage	67	
95% WH USL	64.33	95% HW USL 68.56
	Lognorma	al GOF Test
Shapiro Wilk Test Statistic	0.925	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.897	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.15	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.202	Data appear Lognormal at 5% Significance Level
Data appear	Lognormal	at 5% Significance Level
Background Sta	tistics assu	iming Lognormal Distribution
0E% LITL with 0E% Coverage	00 21	00% Percentile (7) 40.40

95% UTL with 95% Coverage	88.31	90% Percentile (z)	40.49
95% UPL (t)	56.69	95% Percentile (z)	51.56
95% USL	91.36	99% Percentile (z)	81.17

Nonparametric Distribution Free Background Statistics

Data appear Normal at 5% Significance Level

Nonparametric Upper Limits for Background Threshold Values

Nonparamouro opp		bi Buokground Throonold Talaco	
Order of Statistic, r	18	95% UTL with 95% Coverage	41.9
Approx, f used to compute achieved CC	0.947	imate Actual Confidence Coefficient achieved by UTL	0.603
		ximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	41.9	95% BCA Bootstrap UTL with 95% Coverage	41.9
95% UPL	41.9	90% Percentile	34.66
90% Chebyshev UPL	55.52	95% Percentile	35.87
95% Chebyshev UPL	71.34	99% Percentile	40.69
95% USL	41.9		

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations.

The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV.

Result (manganese)

General Statistics				
Total	Number of Observations	18	Number of Distinct Observations	18
	Minimum	137	First Quartile	341.3
	Second Largest	896	Median	473
	Maximum	981	Third Quartile	619.3
	Mean	502.3	SD	231
	Coefficient of Variation	0.46	Skewness	0.423
	Mean of logged Data	6.104	SD of logged Data	0.523
	Critical Values	ior Backg	ground Threshold Values (BTVs)	
Tole	rance Factor K (For UTL)	2.453	d2max (for USL)	2.504
		Norm	nal GOF Test	
S	hapiro Wilk Test Statistic	0.97	Shapiro Wilk GOF Test	
5% SI	napiro Wilk Critical Value	0.897	Data appear Normal at 5% Significance Level	
	Lilliefors Test Statistic	0.113	Lilliefors GOF Test	
5	% Lilliefors Critical Value	0.202	2 Data appear Normal at 5% Significance Level	
	Data appe	ar Norma	al at 5% Significance Level	

Background Statistics Assuming Normal Distribution

95% UTL with 95% Coverage	1069	90% Percentile (z)	798.4
95% UPL (t)	915.2	95% Percentile (z)	882.3
95% USL	1081	99% Percentile (z)	1040

Gamma GOF Test

Muduy Ch	eek ronnaud		
A-D Test Statistic	0.196	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.743	etected data appear Gamma Distributed at 5% Signific	cance Leve
K-S Test Statistic	0.142	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.204	etected data appear Gamma Distributed at 5% Signific	cance Leve
Detected data appea	ar Gamma D	istributed at 5% Significance Level	
		On the last	
k hat (MLE)	Gamma 4 4 9	k star (bias corrected MLE)	3 779
Theta bat (MLE)	111.9	Theta star (bias corrected MLE)	132.9
nu hat (MLE)	161.7	nu star (bias corrected)	136
MLE Mean (bias corrected)	502.3	MLE Sd (bias corrected)	258.4
Background	Statistics As	suming Gamma Distribution	
95% Wilson Hilferty (WH) Approx. Gamma UPL	1016	90% Percentile	848.8
95% Hawkins Wixley (HW) Approx. Gamma UPL	1040	95% Percentile	988.6
95% WH Approx. Gamma UTL with 95% Coverage	1299	99% Percentile	1288
95% HW Approx. Gamma UTL with 95% Coverage	1355		1201
95% WH USL	1322	95% HW USL	1301
	Lognorma	al GOF Test	
Shapiro Wilk Test Statistic	0.959	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.897	Data appear Lognormal at 5% Significance Le	vel
Lilliefors Test Statistic	0.149	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.202	Data appear Lognormal at 5% Significance Le	vel
Data appea	ir Lognorma	at 5% Significance Level	
Background S	tatistics assu	uming Lognormal Distribution	
95% UTL with 95% Coverage	1613	90% Percentile (z)	874.5
95% UPL (t)	1139	95% Percentile (z)	1057
95% USL	1657	99% Percentile (z)	1510
Nonparametri	c Distributio	n Free Background Statistics	
Data app	ear Normal a	at 5% Significance Level	
Nonnorometric I Ir	nor Limito fr	ar Pool/ground Throohold Values	
Order of Statistic r	18	95% UTL with 95% Coverage	981
Approx fused to compute achieved CC	0.947	imate Actual Confidence Coefficient achieved by UTI	0.603
· FF ····, · ···· · · · · · · · · · · · · ·		ximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	981	95% BCA Bootstrap UTL with 95% Coverage	981
95% UPL	981	90% Percentile	791.7
90% Chebyshev UPL	1214	95% Percentile	908.8
95% Chebyshev UPL	1537	99% Percentile	966.6
95% USL	981		
Note: The use of USL tends to yield a conserva	tive estimate	of RTV, especially when the sample size starts exceeding	20
Therefore one may use USL to estimate a BT	/ only when t	the data set represents a background data set free of outling	20. Prs
and consists of observ	ations collec	ted from clean unimpacted locations.	
The use of USL tends to provide a bala	ince betweer	a false positives and false negatives provided the data	
represents a background data set and v	when many o	nsite observations need to be compared with the BTV.	
	-		
Result (selenium)			
	General	Statistics	

Rea

	General Statistics		
Total Number of Observations	18	Number of Missing Observations	0
Number of Distinct Observations	17		
Number of Detects	15	Number of Non-Detects	3
Number of Distinct Detects	15	Number of Distinct Non-Detects	2
Minimum Detect	0.187	Minimum Non-Detect	0.183
Maximum Detect	0.486	Maximum Non-Detect	0.184
Variance Detected	0.00641	Percent Non-Detects	16.67%
Mean Detected	0.362	SD Detected	0.0801
Mean of Detected Logged Data	-1.043	SD of Detected Logged Data	0.252

Critical Values for Background Threshold Values (BTVs)

Tolerance Factor K (For UTL) 2.453

d2max (for USL) 2.504

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.957	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.881	Detected Data appear Normal at 5% Significance	Level
Lilliefors Test Statistic	0.131	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.22	Detected Data appear Normal at 5% Significance	Level
Detected Data	appear No	rmal at 5% Significance Level	
Karlan Malan (KA) Da			
Kapian Meler (KM) Bac	Kground Si		0.0072
	0.552	95% KM LIPL (t)	0.0972
90% KM Percentile (z)	0.457	95% KM Percentile (z)	0.000
99% KM Percentile (z)	0.558	95% KM USL	0.576
() ()			
DL/2 Substitution Back	ground Sta	atistics Assuming Normal Distribution	
Mean	0.317	SD	0.127
95% UTL95% Coverage	0.628	95% UPL (t)	0.543
90% Percentile (z)	0.479	95% Percentile (z)	0.525
99% Percentile (z)	0.612	95% USL	0.634
	100. DL/2 p		
Gamma GOF	Tests on I	Detected Observations Only	
A-D Test Statistic	0.494	Anderson-Darling GOF Test	
5% A-D Critical Value	0.735	etected data appear Gamma Distributed at 5% Signific	ance Leve
K-S Test Statistic	0.163	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.221	etected data appear Gamma Distributed at 5% Signific	ance Leve
Detected data appea	r Gamma I	Distributed at 5% Significance Level	
Gamma	Statistics	on Detected Data Only	
k hat (MLE)	18.7	k star (bias corrected MLE)	15
Theta hat (MLE)	0.0194	Theta star (bias corrected MLE)	0 0241
nu hat (MLE)	560.9	nu star (bias corrected)	450.1
MLE Mean (bias corrected)	0.362	, , , , , , , , , , , , , , , , , , ,	
MLE Sd (bias corrected)	0.0935	95% Percentile of Chisquare (2kstar)	43.78
Gamma ROS	Statistics	using Imputed Non-Detects	
GROS may not be used when data s	et has > 50	1% NDs with many tied observations at multiple DLs	
GROS may not be used when kstar of detects is	small such	as <1.0, especially when the sample size is small (e.g., <15	-20)
For such situations, GRUS	method ma	iy yield incorrect values of UCLs and BTVs	
For gamma distributed detected data, BTVs a		nen une sample size is small.	
Minimum	0 187	Mean	, 0 336
Maximum	0.486	Median	0.359
SD	0.0943	CV	0.281
k hat (MLE)	11.99	k star (bias corrected MLE)	10.03
Theta hat (MLE)	0.028	Theta star (bias corrected MLE)	0.0335
nu hat (MLE)	431.6	nu star (bias corrected)	361
MLE Mean (bias corrected)	0.336	MLE Sd (bias corrected)	0.106
95% Percentile of Chisquare (2kstar)	31.48	90% Percentile	0.477
95% Percentile	0.528	99% Percentile	0.631
The following statistics are co	mputed us	ing Gamma ROS Statistics on Imputed Data	
Upper Limits using Wilso	n Hilferty (WH) and Hawkins Wixley (HW) Methods	
WH	HW	WH	HW
Approx. Gamma UTL with 95% Coverage 0.632	0.643	95% Approx. Gamma UPL 0.536	0.541
95% Gamma USL 0.039	0.052		
Estimates of G	iamma Par	rameters using KM Estimates	
Mean (KM)	0.332	SD (KM)	0.0972
Variance (KM)	0.00944	SE of Mean (KM)	0.0237
k hat (KM)	11.69	k star (KM)	9.78
nu hat (KM)	420.9	nu star (KM)	352.1
theta hat (KM)	0.0284	theta star (KM)	0.034
80% gamma percentile (KM)	0.417	90% gamma percentile (KM)	0.474
95% gamma percentile (KM)	0.524	99% gamma percentile (KM)	0.628
The A-11 (1997)			
The following statistics are o	omputed u	Ising gamma distribution and KM estimates	
opper Limits using Wilso المالين	HW/		Н///
Approx. Gamma UTL with 95% Coverage 0 643	0.657	95% Approx. Gamma UPL 0 541	0.547
.,			

95% KM Gamma Percentile	0.521	0.526	95% Gamma USL 0.652	0.666
Lognor	mal GC	F Test on I	Detected Observations Only	
Shapiro Wilk Test St	atistic	0.896	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical	Value	0.881	Detected Data appear Lognormal at 5% Significance	e Level
Lilliefors Test St	atistic	0.178	Lilliefors GOF Test	
5% Lilliefors Critical	Value	0.22	Detected Data appear Lognormal at 5% Significance	e Level
Detected	Data ap	opear Logno	ormal at 5% Significance Level	
Background Lognormal ROS S	tatistics	Assuming	Lognormal Distribution Using Imputed Non-Detects	
Mean in Original	Scale	0.336	Mean in Log Scale	-1.132
SD in Original	Scale	0.0942	SD in Log Scale	0.309
95% UTL95% Cov	erage	0.687	95% BCA UTL95% Coverage	0.486
95% Bootstrap (%) UTL95% Cov	erage	0.486	95% UPL (t)	0.559
90% Percen	tile (z)	0.479	95% Percentile (z)	0.535
99% Percen	tile (z)	0.661	95% USL	0.698
Statistics using KM est	imates	on Logged	Data and Assuming Lognormal Distribution	
KM Mean of Logged	l Data	-1.152	95% KM UTL (Lognormal)95% Coverage	0.71
KM SD of Logged	l Data	0.33	95% KM UPL (Lognormal)	0.57
95% KM Percentile Lognorn	nal (z)	0.544	95% KM USL (Lognormal)	0.723
Backgroun	d DL/2 :	Statistics A	ssuming Lognormal Distribution	
Mean in Original	Scale	0.317	Mean in Log Scale	-1.267
SD in Original	Scale	0.127	SD in Log Scale	0.564
95% UTL95% Cov	erage	1.124	95% UPL (t)	0.772
90% Percen	tile (z)	0.581	95% Percentile (z)	0.713
99% Percen	tile (z)	1.047	95% USL	1.157
DL/2 is not a Recommende	ed Meth	od. DL/2 p	rovided for comparisons and historical reasons.	
Nonpara	ametric	Distributio	n Free Background Statistics	
Data appear to fo	bliow a	Discernible	Distribution at 5% Significance Level	
Nonparametric Upper Limi	ts for B	TVs(no dist	inction made between detects and nondetects)	
Order of Stat	istic, r	18	95% UTL with95% Coverage	0.486
Approx, f used to compute achieve	ed CC	0.947	imate Actual Confidence Coefficient achieved by UTL	0.603
ximate Sample Size needed to achieve specifie	ed CC	59	95% UPL	0.486
95%	6 USL	0.486	95% KM Chebyshev UPL	0.767
Note: The use of USL tends to yield a co	nservati	ve estimate	of BTV, especially when the sample size starts exceeding	20.
Therefore, one may use USL to estimate	a BTV	only when t	the data set represents a background data set free of outlie	rs
and consists of	observa	tions collec	ted from clean unimpacted locations.	
The use of USL tends to provide	a balar	nce betweer	n false positives and false negatives provided the data	
represents a background data se	t and w	hen many o	nsite observations need to be compared with the BTV.	
Result (zinc)				
General Statistics				
Total Number of Observ	ations	18	Number of Distinct Observations	18
Mir	imum	18.4	First Quartile	30.53
Second La	argest	74.8	Median	42.55
	-			

Occond Edigest	74.0	Wicdian	42.00	
Maximum	81.5	Third Quartile	65.7	
Mean	47.19	SD	21.17	
Coefficient of Variation	0.448	Skewness	0.15	
Mean of logged Data	3.747	SD of logged Data	0.494	
Critical Values for Background Threshold Values (BTVs)				

Tolerance Factor K (For UTL) 2.453 d2max (for USL) 2.504

Normal GOF Test

Shapiro Wilk Test Statistic	0.915	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.897	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.206	Lilliefors GOF Test
5% Lilliefors Critical Value	0.202	Data Not Normal at 5% Significance Level
Data appear Approximate Normal at 5% Significance Level		

Background Statistics Assuming Normal Distribution

95% UTL with 95% Coverage	99.11	90% Percentile (z)	74.32
95% UPL (t)	85.02	95% Percentile (z)	82.01
95% USL	100.2	99% Percentile (z)	96.43
	Gamma	GOF Test	
A-D Test Statistic	0.589	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value 0.743 Petected data appear Gamma Distributed at 5% Significar			
K-S Test Statistic	0.166	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.204	etected data appear Gamma Distributed at 5% Signific	ance Leve
Detected data appea	ir Gamma Di	stributed at 5% Significance Level	
	Gamma	Statistics	
k hat (MLE)	4.81	k star (bias corrected MLE)	4.046
Theta hat (MLE)	9.811	Theta star (bias corrected MLE)	11.67
nu hat (MLE)	173.2	nu star (bias corrected)	145.6
MLE Mean (bias corrected)	47.19	MLE Sd (bias corrected)	23.46
Background S	Statistics Ass	suming Gamma Distribution	
95% Wilson Hilferty (WH) Approx. Gamma UPL	93.72	90% Percentile	78.64
95% Hawkins Wixley (HW) Approx. Gamma UPL	95.48	95% Percentile	91.21
95% WH Approx. Gamma UTL with 95% Coverage	119	99% Percentile	118
95% HW Approx. Gamma UTL with 95% Coverage	123.4		
95% WH USL	121.1	95% HW USL	125.8
	Lognorma	I GOF Test	
Shapiro Wilk Test Statistic	0.916	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.897	Data appear Lognormal at 5% Significance Lev	/el
Lilliefors Test Statistic	0.173	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.202	Data appear Lognormal at 5% Significance Lev	vel
Data appea	r Lognormal	at 5% Significance Level	
Background St	atistics assu	ming Lognormal Distribution	
95% UTL with 95% Coverage	142.3	90% Percentile (z)	79.8
95% UPL (t)	102.4	95% Percentile (z)	95.48
95% USL	145.9	99% Percentile (z)	133.7
Nonparametric	: Distribution	Free Background Statistics	
Data appear App	proximate No	ormal at 5% Significance Level	
Nonparametric Up	per Limits fo	r Background Threshold Values	
Order of Statistic, r	18	95% UTL with 95% Coverage	81.5
Approx, f used to compute achieved CC	0.947	imate Actual Confidence Coefficient achieved by UTL	0.603
		ximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	81.5	95% BCA Bootstrap UTL with 95% Coverage	81.5
95% UPL	81.5	90% Percentile	74.31
90% Chebyshev UPL	112.4	95% Percentile	75.81
95% Chebyshey UPI	142	99% Percentile	80.36

95% USL 81.5

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations.

The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV.

Background Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/21/2021 8:39:19 PM From File proucl_data_b.xls Full Precision OFF Confidence Coefficient 95% Coverage 95% Different or Future K Observations 1 Number of Bootstrap Operations 2000

Result (antimony)

General Statistics

Total Number of Observations	22 Number of Missing Observations		0
Number of Distinct Observations	13		
Number of Detects	8	Number of Non-Detects	14
Number of Distinct Detects	8	Number of Distinct Non-Detects	5
Minimum Detect	0.194	Minimum Non-Detect	0.166
Maximum Detect	0.624	Maximum Non-Detect	0.17
Variance Detected	0.0198	Percent Non-Detects	63.64%
Mean Detected	0.44	SD Detected	0.141
Mean of Detected Logged Data	-0.876	SD of Detected Logged Data	0.378

Critical Values for Background Threshold Values (BTVs)

Tolerance Factor K (For UTL) 2.349 d2max (for USL) 2.603

Normal GOF Te	est on Dete	cts Only
Shapiro Wilk Test Statistic	0.974	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.818	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.149	Lilliefors GOF Test
5% Lilliefors Critical Value	0.283	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan Meier (KM) Background Statistics Assuming Normal Distribution

KM Mean	0.266	KM SD	0.154
95% UTL95% Coverage	0.627	95% KM UPL (t)	0.536
90% KM Percentile (z)	0.463	95% KM Percentile (z)	0.519
99% KM Percentile (z)	0.624	95% KM USL	0.666

DL/2 Substitution Background Statistics Assuming Normal Distribution

Mean	0.213	SD	0.193
95% UTL95% Coverage	0.668	95% UPL (t)	0.553
90% Percentile (z)	0.461	95% Percentile (z)	0.531
99% Percentile (z)	0.663	95% USL	0.717

DL/2 is not a recommended method. DL/2 provided for comparisons and historical reasons

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.278	A-D Test Statistic
etected data appear Gamma Distributed at 5% Significance Lev	0.716	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.18	K-S Test Statistic
etected data appear Gamma Distributed at 5% Significance Lev	0.294	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

5.829	k star (bias corrected MLE)	9.193	k hat (MLE)
0.0755	0.0479 Theta star (bias corrected MLE)		Theta hat (MLE)
93.27	nu star (bias corrected)	147.1	nu hat (MLE)
		0.44	MLE Mean (bias corrected)
20.57	95% Percentile of Chisquare (2kstar)	0.182	MLE Sd (bias corrected)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum 0.01

0.209 Mean

Ν	laximum	0.624	Median	0.143
	SD	0.203	CV	0.973
k h	at (MLE)	0.829	k star (bias corrected MLE)	0.746
Theta h	at (MLF)	0 252	Theta star (hias corrected MLE)	0.28
nu hat (MLE)		36.46	nu star (bias corrected)	32.82
MLE Moon (bios o		0 200	MLE Sd (bios corrected)	0 242
		0.209	MLE Su (blas corrected)	0.242
95% Percentile of Chisquare	e (2kstar)	4.963	90% Percentile	0.516
95% P	ercentile	0.695	99% Percentile	1.118
The following statistics are co	mputed u	sing Gamm	a ROS Statistics on Imputed Data	
Upper Limits using Wilson	n Hilferty	(WH) and H	lawkins Wixley (HW) Methods	
	WH	HW	WH	HW
95% Approx. Gamma UTL with 95% Coverage	1.09	1.264	95% Approx. Gamma UPL 0.73	0.797
95% Gamma USL	1.275	1.519		
Estimates of G	iamma Pa	arameters u	sing KM Estimates	
Me	ean (KM)	0.266	SD (KM)	0.154
Varia	nce (KM)	0.0237	SE of Mean (KM)	0.0351
k	hat (KM)	2.98	k star (KM)	2.604
nu	hat (KM)	131.1	nu star (KM)	114.6
theta	hat (KM)	0.0892	theta star (KM)	0.102
80% gamma percen	tile (KM)	0.385	90% gamma percentile (KM)	0 486
95% gamma percer	tile (KM)	0.581	99% gamma percentile (KM)	0 788
<u>-</u>			····· 9-····· P······ (····)	
The following statistics are c	omputed	usina aamr	na distribution and KM estimates	
Upper Limits using Wilson	n Hilfertv ((WH) and H	lawkins Wixley (HW) Methods	
	wн	НŴ	усу, WH	НW
95% Approx Gamma UTL with 95% Coverage	0 682	0 693	95% Approx Gamma UPI 0 543	0 544
95% KM Gamma Percentile	0.518	0.518	95% Gamma USI 0.749	0.766
	0.010	0.010		0.700
Lognormal GC)F Test or	Detected	Observations Only	
Shaniro Wilk Test	Statistic	0 008	Shaniro Wilk GOE Test	
5% Shapira Wilk Critic		0.000	Detected Data appear Legnermal at 5% Significant	
		0.010		
	Statistic	0.175	Lillefors GOF Test	
5% Lillietors Critic	ai value	0.283	Detected Data appear Lognormal at 5% Significant	e Levei
Detected Data a	opear Log	normal at 5	% Significance Level	
Background Lagnormal DOS Statistics	Accumir		al Distribution Lising Imputed Non Detects	
Moon in Origin				1 601
		0.249		-1.001
	nal Scale	0.172	SD In Log Scale	0.654
95% UTL95% C	Coverage	0.938	95% BCA UTL95% Coverage	0.622
95% Bootstrap (%) UTL95% C	Coverage	0.624	95% UPL (t)	
90% Perc	entile (z)	0.467	95% Percentile (z)	
99% Perc	entile (z)	0.924	95% USL	1.107
Statistics using KM estimates	on Logge	d Data and	Assuming Lognormal Distribution	
KM Mean of Log	ged Data	-1.461	95% KM UTL (Lognormal)95% Coverage	0.735
KM SD of Log	ged Data	0.491	95% KM UPL (Lognormal)	0.55
95% KM Percentile Logn	ormal (z)	0.52	95% KM USL (Lognormal)	0.832
Background DL/2	Statistics	Assuming I	Lognormal Distribution	
Mean in Origir	nal Scale	0.213	Mean in Log Scale	-1.898
SD in Origir	nal Scale	0.193	SD in Log Scale	0.82
95% UTL95% C	Coverage	1.029	95% UPL (t)	
90% Perc	entile (z)	0.429	95% Percentile (z)	
99% Perc	entile (z)	1.01	95% USL	1.267
DL/2 is not a Recommended Met	nod. DL/2	provided fo	r comparisons and historical reasons.	
Nonparametric	Distributi	on Free Ba	ckground Statistics	
Data appear to follow a	Discernib	le Distributi	ion at 5% Significance Level	
Nonparametric Upper Limits for B	TVs(no d	istinction m	ade between detects and nondetects)	
Order of S	statistic, r	22	95% UTL with95% Coverage	0.624
		4 4 5 0		0 0 7 0

 Approx, f used to compute achieved CC
 1.158
 imate Actual Confidence Coefficient achieved by UTL
 0.676

 Approximate Sample Size needed to achieve specified CC
 59
 95% UPL
 0.617

 95% USL
 0.624
 95% KM Chebyshev UPL
 0.952

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.

Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV.

Result (arsenic)

General Statistics

4.805
7.03
9.175
3.427
0.428
0.56

Critical Values for Background Threshold Values (BTVs)

Tolerance Factor K (For UTL)	2.349	d2max (for USL)	2.603

Normal	GOF Tes	t
Shapiro Wilk Test Statistic	0.97	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.911	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.0796	Lilliefors GOF Test
5% Lilliefors Critical Value	0.184	Data appear Normal at 5% Significance Level
Data appear Normal	at 5% Sigr	ificance Level

Background Statistics Assuming Normal Distribution

95% UTL with 95% Coverage	15.24	90% Percentile (z)	11.58
95% UPL (t)	13.22	95% Percentile (z)	12.82
95% USL	16.11	99% Percentile (z)	15.16

Gamma	GOF	Test
aanna	401	1001

A-D Test Statistic	0.178	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.747	Detected data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.0883	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.186	Detected data appear Gamma Distributed at 5% Significance Leve
Detected data appear Gamma	Distributed	at 5% Significance Level

Gamma Statistics

3.493	k star (bias corrected MLE)	4.009	k hat (MLE)			
2.057	Theta star (bias corrected MLE)	1.792	Theta hat (MLE)			
153.7	nu star (bias corrected)	176.4	nu hat (MLE)			
3.845	MLE Sd (bias corrected)	7.186	MLE Mean (bias corrected)			
						

Background Statistics Assuming Gamma Distribution

95% Wilson Hilferty (WH) Approx. Gamma UPL	14.8	90% Percentile	12.34
95% Hawkins Wixley (HW) Approx. Gamma UPL	15.18	95% Percentile	14.45
95% WH Approx. Gamma UTL with 95% Coverage	18.58	99% Percentile	18.98
95% HW Approx. Gamma UTL with 95% Coverage	19.43		
95% WH USL	20.39	95% HW USL	21.51

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.95	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.911	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.116	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.184	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Background Statistics assuming Lognormal Distribution

95% UTL with 95% Coverage	23.52	90% Percentile (z)	12.94
95% UPL (t)	16.91	95% Percentile (z)	15.86
95% USL	27.11	99% Percentile (z)	23.22

Nonparametric Distribution Free Background Statistics

Data appear Normal at 5% Significance Level

Nonparametric Upper Limits for Background Threshold Values

Order of Statistic, r	22	95% UTL with 95% Coverage	14.2
Approx, f used to compute achieved CC	1.158	imate Actual Confidence Coefficient achieved by UTL	0.676
		ximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	14.2	95% BCA Bootstrap UTL with 95% Coverage	14.2
95% UPL	14.11	90% Percentile	12.06
90% Chebyshev UPL	17.7	95% Percentile	13.54
95% Chebyshev UPL	22.46	99% Percentile	14.07
95% USL	14.2		

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations.

The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV.

Result (cadmium)

General Statistics

22	Number of Missing Observations	0
15		
7	Number of Non-Detects	15
7	Number of Distinct Non-Detects	8
0.095	Minimum Non-Detect	0.0857
0.184	Maximum Non-Detect	0.0874
0.00119	Percent Non-Detects	68.18%
0.136	SD Detected	0.0344
-2.024	SD of Detected Logged Data	0.261
	22 15 7 0.095 0.184 0.00119 0.136 -2.024	22Number of Missing Observations1577Number of Non-Detects7Number of Distinct Non-Detects0.095Minimum Non-Detect0.184Maximum Non-Detect0.00119Percent Non-Detects0.136SD Detected-2.024SD of Detected Logged Data

Critical Values for Background Threshold Values (BTVs)

Tolerance Factor K (For UTL) 2.349

d2max (for USL) 2.603

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.93	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.803	Detected Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic	0.164	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.304	Detected Data appear Normal at 5% Significance Level	
Detected Data appear Normal at 5% Significance Level			

Kaplan Meier (KM) Background Statistics Assuming Normal Distribution

KM Mean	0.102	KM SD	0.0295
95% UTL95% Coverage	0.171	95% KM UPL (t)	0.154
90% KM Percentile (z)	0.14	95% KM Percentile (z)	0.15
99% KM Percentile (z)	0.17	95% KM USL	0.179

DL/2 Substitution Background Statistics Assuming Normal Distribution

Mean	0.0726	SD	0.048
95% UTL95% Coverage	0.185	95% UPL (t)	0.157
90% Percentile (z)	0.134	95% Percentile (z)	0.152
99% Percentile (z)	0.184	95% USL	0.197

DL/2 is not a recommended method. DL/2 provided for comparisons and historical reasons

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.318	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.707	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.19	K-S Test Statistic
etected data appear Gamma Distributed at 5% Significance Level	0.312	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	17.69	k star (bias corrected MLE)	10.21
Theta hat (MLE)	0.00769	Theta star (bias corrected MLE)	0.0133
nu hat (MLE)	247.7	nu star (bias corrected)	142.9
MLE Mean (bias corrected)	0.136		
MLE Sd (bias corrected)	0.0426	95% Percentile of Chisquare (2kstar)	31.93

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20) For such situations, GROS method may yield incorrect values of UCLs and BTVs This is especially true when the sample size is small. For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates 0.0646 Minimum 0.01 Mean 0.0362 Maximum 0.184 Median 0.0552 SD CV k hat (MLE) 1.447 k star (bias corrected MLE) Theta hat (MLE) 0.0446 Theta star (bias corrected MLE) 0.0504 nu hat (MLE) 63.66 nu star (bias corrected) 56.32 MLE Mean (bias corrected) 0.0646 MLE Sd (bias corrected) 0.0571 95% Percentile of Chisquare (2kstar) 7.036 90% Percentile 95% Percentile 0.177 99% Percentile The following statistics are computed using Gamma ROS Statistics on Imputed Data Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods WН НW WН нw 95% Approx. Gamma UTL with 95% Coverage 0.258 0.277 95% Approx. Gamma UPL 0.185

Estimates of Gamma Parameters using KM Estimates

0.322

0.294

95% Gamma USL

Mean (KM)	0.102	SD (KM)	0.0295
Variance (KM)	8.7194E-4	SE of Mean (KM)	0.0068
k hat (KM)	11.86	k star (KM)	10.27
nu hat (KM)	521.9	nu star (KM)	452.1
theta hat (KM)	0.00857	theta star (KM)	0.0099
80% gamma percentile (KM)	0.127	90% gamma percentile (KM)	0.144
95% gamma percentile (KM)	0.159	99% gamma percentile (KM)	0.19

The following statistics are computed using gamma distribution and KM estimates

Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods

	WH	HW		WH	HW
95% Approx. Gamma UTL with 95% Coverage	0.173	0.173	95% Approx. Gamma UPL	0.152	0.152
95% KM Gamma Percentile	0.148	0.148	95% Gamma USL	0.182	0.183

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.918	Shapiro Wilk GOF Test		
5% Shapiro Wilk Critical Value	0.803	Detected Data appear Lognormal at 5% Significance Level		
Lilliefors Test Statistic	0.177	Lilliefors GOF Test		
5% Lilliefors Critical Value	0.304	Detected Data appear Lognormal at 5% Significance Level		
Detected Data appear Lognormal at 5% Significance Level				

Background Lognormal ROS Statistics Assuming Lognormal Distribution Using Imputed Non-Detects

Mean in Original Scale	0.0803	Mean in Log Scale	-2.647
SD in Original Scale	0.0442	SD in Log Scale	0.497
95% UTL95% Coverage	0.228	95% BCA UTL95% Coverage	0.184
95% Bootstrap (%) UTL95% Coverage	0.184	95% UPL (t)	0.17
90% Percentile (z)	0.134	95% Percentile (z)	0.16
99% Percentile (z)	0.225	95% USL	0.258
Statistics using KM estimates on Logge	d Data and	Assuming Lognormal Distribution	
KM Mean of Logged Data	-2.319	95% KM UTL (Lognormal)95% Coverage	0.174
KM SD of Logged Data	0.243	95% KM UPL (Lognormal)	0.151
95% KM Percentile Lognormal (z)	0.147	95% KM USL (Lognormal)	0.185
Background DL/2 Statistics	Assuming	Lognormal Distribution	
Mean in Original Scale	0.0726	Mean in Log Scale	-2.789
SD in Original Scale	0.048	SD in Log Scale	0.553
05% LITL 05% Coverage	0 225	95% LIDI (t)	0 163

	SD in Original Scale	0.048		SD in Log Scale	0.553
	95% UTL95% Coverage	0.225		95% UPL (t)	0.163
	90% Percentile (z)	0.125		95% Percentile (z)	0.153
	99% Percentile (z)	0.222		95% USL	0.259
_			 		

DL/2 is not a Recommended Method. DL/2 provided for comparisons and historical reasons.

Nonparametric Distribution Free Background Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects)

Order of Statistic, r 22

0.856

1.28

0.14

0.263

0.192

Approx, f used to compute achieved CC	1.158	imate Actual Confidence Coefficient achieved by UTL	0.676
Approximate Sample Size needed to achieve specified CC	59	95% UPL	0.181
95% USL	0.184	95% KM Chebyshev UPL	0.233

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data

represents a background data set and when many onsite observations need to be compared with the BTV.

Result (chromium)

Number of Distinct Observations	22
First Quartile	2.993
Median	3.82
Third Quartile	4.625
SD	1.981
Skewness	1.258
SD of logged Data	0.463
	lumber of Distinct Observations First Quartile Median Third Quartile SD Skewness SD of logged Data

Critical Values for Background Threshold Values (BTVs)

Tolerance Factor K (For UTL)

(For UTL) 2.349

d2max (for USL) 2.603

Normal GOF Test

Shapiro Wilk Test Statistic	0.878	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.911	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.193	Lilliefors GOF Test
5% Lilliefors Critical Value	0.184	Data Not Normal at 5% Significance Level
Data Mat Name 1 of	EN 01	anna Laval

Data Not Normal at 5% Significance Level

Background	Statistics	Assuming	Normal	Distribution
------------	------------	----------	--------	--------------

95% UTL with 95% Coverage	8.747	90% Percentile (z)	6.633
95% UPL (t)	7.579	95% Percentile (z)	7.352
95% USL	9.25	99% Percentile (z)	8.703

Gamma GOF Test

A-D Test Statistic	0.397	Anderson-Darling Gamma GOF Test		
5% A-D Critical Value	0.746	Detected data appear Gamma Distributed at 5% Significance Leve		
K-S Test Statistic	0.139	Kolmogorov-Smirnov Gamma GOF Test		
5% K-S Critical Value	0.186	Detected data appear Gamma Distributed at 5% Significance Leve		
Detected data appear Gamma Distributed at 5% Significance Level				

Gamma Statistics

Gam			
k hat (MLE)	5.036	k star (bias corrected MLE)	4.38
Theta hat (MLE)	0.813	Theta star (bias corrected MLE)	0.935
nu hat (MLE)	221.6	nu star (bias corrected)	192.7
MLE Mean (bias corrected)	4.094	MLE Sd (bias corrected)	1.956
Background Statistics A	ssuming	Gamma Distribution	
95% Wilson Hilferty (WH) Approx. Gamma UPL	7.896	90% Percentile	6.715
95% Hawkins Wixley (HW) Approx. Gamma UPL	7.981	95% Percentile	7.749
95% WH Approx. Gamma UTL with 95% Coverage	9.727	99% Percentile	9.95
95% HW Approx. Gamma UTL with 95% Coverage	9.959		
95% WH USL	10.59	95% HW USL	10.92
Lognorr	mal GOF ⁻	Fest	

		•
Shapiro Wilk Lognormal GOF Test	0.974	Shapiro Wilk Test Statistic
Data appear Lognormal at 5% Significance Level	0.911	5% Shapiro Wilk Critical Value
Lilliefors Lognormal GOF Test	0.125	Lilliefors Test Statistic
Data appear Lognormal at 5% Significance Level	0.184	5% Lilliefors Critical Value

Data appear Lognormal at 5% Significance Level

Background Statistics assuming Lognormal Distribution

95% UTL with 95% Coverage	10.97	90% Percentile (z)	6.689
95% UPL (t)	8.346	95% Percentile (z)	7.915
95% USL	12.34	99% Percentile (z)	10.85

Nonparametric Distribution Free Background Statistics Data appear Gamma Distributed at 5% Significance Level

Nonparametric Upper Limits for Background Threshold Values

9.13	with 95% Coverage	95% UTL with	22	Order of Statistic, r	
0.676	ent achieved by UTL	imate Actual Confidence Coefficient a	1.158	Approx, f used to compute achieved CC	
59	chieve specified CC	ximate Sample Size needed to achie			
9.13	with 95% Coverage	95% BCA Bootstrap UTL with	9.13	95% Percentile Bootstrap UTL with 95% Coverage	
7.499	90% Percentile		8.961	95% UPL	
7.989	95% Percentile		10.17	90% Chebyshev UPL	
8.893	99% Percentile		12.92	95% Chebyshev UPL	
			9.13	95% USL	

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations.

The use of USL tends to provide a balance between false positives and false negatives provided the data

represents a background data set and when many onsite observations need to be compared with the BTV.

Result (copper)

General Statistics

Total Number of Observations	22	Number of Distinct Observations	22
Minimum	2.46	First Quartile	3.885
Second Largest	19	Median	5.57
Maximum	22	Third Quartile	9.41
Mean	7.583	SD	5.418
Coefficient of Variation	0.714	Skewness	1.464
Mean of logged Data	1.821	SD of logged Data	0.636

Critical Values for	r Background	Threshold	Values	(BTVs)
---------------------	--------------	-----------	--------	--------

Tolerance Factor K (For UTL) 2.349

d2max (for USL) 2.603

Norma	GOF Tes	t i i i i i i i i i i i i i i i i i i i
Shapiro Wilk Test Statistic	0.819	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.911	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.248	Lilliefors GOF Test
5% Lilliefors Critical Value	0.184	Data Not Normal at 5% Significance Level
Data Not Normal at	5% Signif	icance Level

Background Statistics Assuming Normal Distribution

95% UTL with 95% Coverage	20.31	90% Percentile (z)	14.53
95% UPL (t)	17.11	95% Percentile (z)	16.49
95% USL	21.68	99% Percentile (z)	20.19

Gamma GOF Test

35 Anderson-Darling Gamma GOF Test	0.685	A-D Test Statistic
52 Detected data appear Gamma Distributed at 5% Significance	0.752	5% A-D Critical Value
31 Kolmogorov-Smirnov Gamma GOF Test	0.191	K-S Test Statistic
37 Data Not Gamma Distributed at 5% Significance Level	0.187	5% K-S Critical Value

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Gamm	a Statistics		
k hat (MLE)	2.591	k star (bias corrected MLE)	2.268
Theta hat (MLE)	2.926	Theta star (bias corrected MLE)	3.343
nu hat (MLE)	114	nu star (bias corrected)	99.81
MLE Mean (bias corrected)	7.583	MLE Sd (bias corrected)	5.035
Background Statistics A	ssuming Ga	mma Distribution	
95% Wilson Hilferty (WH) Approx. Gamma UPL	17.75	90% Percentile	14.32
95% Hawkins Wixley (HW) Approx. Gamma UPL	17.95	95% Percentile	17.29
95% WH Approx. Gamma UTL with 95% Coverage	23.24	99% Percentile	23.83
95% HW Approx. Gamma UTL with 95% Coverage	24		
95% WH USL	25.92	95% HW USL	27.03

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.951	Shapiro Wilk Lognormal GOF Test		
5% Shapiro Wilk Critical Value	0.911	Data appear Lognormal at 5% Significance Level		
Lilliefors Test Statistic	0.149	Lilliefors Lognormal GOF Test		
5% Lilliefors Critical Value	0.184	Data appear Lognormal at 5% Significance Level		
Data appear Lognorma	al at 5% Sig	nificance Level		
Deskursund Otstistiss sesuring Less small Distrikution				
background Statistics ass	uming Logr	iormai Distribution		

95% UTL with 95% Coverage	27.53	90% Percentile (z)	13.96
95% UPL (t)	18.92	95% Percentile (z)	17.59
95% USL	32.36	99% Percentile (z)	27.14

Nonparametric Distribution Free Background Statistics

Data appear Approximate Gamma Distribution at 5% Significance Level

Nonparametric Upper Limits for Background Threshold Values

Order of Statistic, r	22	95% UTL with 95% Coverage	22
Approx, f used to compute achieved CC	1.158	imate Actual Confidence Coefficient achieved by UTL	0.676
		ximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	22	95% BCA Bootstrap UTL with 95% Coverage	22
95% UPL	21.55	90% Percentile	14.34
90% Chebyshev UPL	24.2	95% Percentile	18.77
95% Chebyshev UPL	31.73	99% Percentile	21.37
95% USL	22		

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations.

The use of USL tends to provide a balance between false positives and false negatives provided the data

represents a background data set and when many onsite observations need to be compared with the BTV.

Result (lead)

General Statistics

Total Number of Observations	21	Number of Distinct Observations	21
Minimum	5.11	First Quartile	8.17
Second Largest	22.1	Median	9.03
Maximum	30.9	Third Quartile	13
Mean	11.53	SD	6.161
Coefficient of Variation	0.535	Skewness	1.913
Mean of logged Data	2.34	SD of logged Data	0.445

2.58

Critical Values for Background Threshold Values (BTVs)

Tolerance Factor K (For UTL)	2.371	d2max (for USL)

Normal	GOF Test	
Shapiro Wilk Test Statistic	0.799	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.908	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.223	Lilliefors GOF Test
5% Lilliefors Critical Value	0.188	Data Not Normal at 5% Significance Level
Data Not Normal at	5% Signifi	cance Level

Background Statistics Assuming Normal Distribution

95% UTL with 95% Coverage	26.14	90% Percentile (z)	19.42
95% UPL (t)	22.4	95% Percentile (z)	21.66
95% USL	27.43	99% Percentile (z)	25.86

Gamma	GOF Tes	t
A-D Test Statistic	0.779	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.745	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.193	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.19	Data Not Gamma Distributed at 5% Significance Level
Data Not Gamma Distribu	ted at 5%	Significance Level

Gamma Statistics

4.266	k star (bias corrected MLE)	4.94	k hat (MLE)
2.702	Theta star (bias corrected MLE)	2.333	Theta hat (MLE)
179.2	nu star (bias corrected)	207.5	nu hat (MLE)

MLE Mean (bias corrected)	11.53	MLE Sd (bias corrected)	5.581
Background Statistics As	ssuming Gamma Distribution		
95% Wilson Hilferty (WH) Approx. Gamma UPL	22.37	90% Percentile	19
95% Hawkins Wixley (HW) Approx. Gamma UPL	22.43	95% Percentile	21.97
95% WH Approx. Gamma UTL with 95% Coverage	27.75	99% Percentile	28.28
95% HW Approx. Gamma UTL with 95% Coverage	28.15		
95% WH USL	29.8	95% HW USL	30.36

Lognormal GOF Test Shapiro Wilk Test Statistic 0.944 Shapiro Wilk Lognormal GOF Test 5% Shapiro Wilk Critical Value 0.908 Data appear Lognormal at 5% Significance Level Lilliefors Test Statistic 0.17 Lilliefors Lognormal GOF Test 5% Lilliefors Critical Value 0.188 Data appear Lognormal at 5% Significance Level Data appear Lognormal at 5% Significance Level

Background Statistics assuming Lognormal Distribution

95% UTL with 95% Coverage	29.83	90% Percentile (z)	18.37
95% UPL (t)	22.78	95% Percentile (z)	21.59
95% USL	32.75	99% Percentile (z)	29.25

Nonparametric Distribution Free Background Statistics

Data appear Lognormal at 5% Significance Level

Nonparametric Upper Limits for Background Threshold Values

Nonparametric opper Linnis	ioi backyi		
Order of Statistic, r	21	95% UTL with 95% Coverage	30.9
Approx, f used to compute achieved CC	1.105	imate Actual Confidence Coefficient achieved by UTL	0.659
		ximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	30.9	95% BCA Bootstrap UTL with 95% Coverage	30.9
95% UPL	30.02	90% Percentile	18.9
90% Chebyshev UPL	30.45	95% Percentile	22.1
95% Chebyshev UPL	39.02	99% Percentile	29.14
95% USL	30.9		

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations.

The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV.

Result (manganese)

General Statistics

Total Number of Observations	20	Number of Distinct Observations	19
Minimum	111	First Quartile	183
Second Largest	406	Median	252
Maximum	474	Third Quartile	306.8
Mean	253.4	SD	95.02
Coefficient of Variation	0.375	Skewness	0.761
Mean of logged Data	5.469	SD of logged Data	0.377

Critical Values for Background Threshold Values (BTVs)

Tolerance Factor K (For UTL)	2.396	d2max (for USL)	2.557
Normal	GOF Test		
Shapiro Wilk Test Statistic	0.941	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.905	Data appear Normal at 5% Significance Level	

Data appear Normal at 5% Significance Level				
5% Lilliefors Critical Value	0.192	Data appear Normal at 5% Significance Level		
Lilliefors Test Statistic	0.151	Lilliefors GOF Test		
5% Shapiro Wilk Critical Value	0.905	Data appear Normal at 5% Significance Level		

Background Statistics Assuming Normal Distribution

95% UTL with 95%	% Coverage	481	90% Percentile (z)	375.1
:	95% UPL (t)	421.7	95% Percentile (z)	409.6
	95% USL	496.3	99% Percentile (z)	474.4

Gamma GOF Test

Tiver Mountain Backy	jiounu (121)		
A-D Test Statistic	0.254	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value 0.743)etected of		etected data appear Gamma Distributed at 5% Significance Leve	
K-S Test Statistic	0.103	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.194)etected data appear Gamma Distributed at 5% Signific	cance Leve
Detected data appear Gamma	Distributed	d at 5% Significance Level	
Gam	ma Statistic	S	
k hat (MLE)	7.712	k star (bias corrected MLE)	6.589
Theta hat (MLE)	32.85	Theta star (bias corrected MLE)	38.45
nu hat (MLE)	308.5	nu star (bias corrected)	263.6
MLE Mean (bias corrected)	253.4	MLE Sd (bias corrected)	98.7
Background Statistics	Assumina (Gamma Distribution	
95% Wilson Hilferty (WH) Approx. Gamma UPL	441.9	90% Percentile	385.2
95% Hawkins Wixley (HW) Approx. Gamma UPL	446.1	95% Percentile	434.5
95% WH Approx. Gamma UTL with 95% Coverage	532.1	99% Percentile	537.3
95% HW Approx. Gamma UTL with 95% Coverage	542.6		
95% WH USL	557.1	95% HW USL	569.8
		ant .	
Logioi Shaniro Wilk Test Statistic	0.076	Shaniro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.970	Data appear Lognormal at 5% Significance Log	رما
	0.303	Lilliefore Lognormal GOE Test	
5% Lilliefors Critical Value	0.11	Data appear Lognormal at 5% Significance Log	رما
Data appear Lognorn	nal at 5% S	ignificance Level	
Background Statistics as	ssuming Lo	gnormal Distribution	
95% UTL with 95% Coverage	584.7	90% Percentile (z)	384.3
95% UPL (t)	462.2	95% Percentile (z)	440.6
95% USL	621.2	99% Percentile (z)	569.6
Nonnorometria Distribut	tion Eroo Br	ackground Statistics	
Data appear Norma	al at 5% Sig		
	in at o it olg		
Nonparametric Upper Limits	s for Backg	round Threshold Values	
Order of Statistic, r	20	95% UTL with 95% Coverage	474
Approx, f used to compute achieved CC	1.053	imate Actual Confidence Coefficient achieved by UTL	0.642
		ximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	474	95% BCA Bootstrap UTL with 95% Coverage	474
95% UPL	470.6	90% Percentile	405.1
90% Chebyshev UPL	545.4	95% Percentile	409.4
95% Chebyshev UPL	677.8	99% Percentile	461.1
95% USL	474		
Note: The use of USL tends to yield a conservative estimation	ate of BTV	especially when the sample size starts exceeding 20	
Therefore one may use USL to estimate a BTV only whe	on the date s	set represents a background data set, free of outliers	
and consists of observations col	lected from	clean unimpacted locations.	
The use of USL tends to provide a balance betwee	een false po	sitives and false negatives provided the data	

represents a background data set and when many onsite observations need to be compared with the BTV.

Result (selenium)

General Statistics

Total Number of Observations	22	Number of Distinct Observations	22
Minimum	0.214	First Quartile	0.327
Second Largest	0.832	Median	0.516
Maximum	0.877	Third Quartile	0.602
Mean	0.499	SD	0.197
Coefficient of Variation	0.395	Skewness	0.233
Mean of logged Data	-0.777	SD of logged Data	0.429

Critical Values for Background Threshold Values (BTVs)

Tolerance Factor K (For UTL) 2.349 d2max (for USL) 2.603

Normal GOF Test

Shapiro Wilk Test Statistic 0.958 Shapiro Wilk GOF Test 5% Shapiro Wilk Critical Value 0.911 Data appear Normal at 5% Significance Level

Lilliefors Test Statistic	0.101	Lilliefors GOF Test
5% Lilliefors Critical Value	0.184	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Background Statistics Assuming Normal Distribution

95% UTL with 95% Coverage	0.962	90% Percentile (z)	0.752
95% UPL (t)	0.846	95% Percentile (z)	0.823
95% USL	1.012	99% Percentile (z)	0.958

Gamma GOF Test

A-D Test Statistic	0.358	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.746	Detected data appear Gamma Distributed at 5% Significance Leve	
K-S Test Statistic	0.122	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.186	Detected data appear Gamma Distributed at 5% Significance Leve	
Detected data appear Gamma Distributed at 5% Significance Level			

Gamma Statistics

k hat (MLE)	6.23	k star (bias corrected MLE)	5.41
Theta hat (MLE)	0.0801	Theta star (bias corrected MLE)	0.0923
nu hat (MLE)	274.1	nu star (bias corrected)	238.1
MLE Mean (bias corrected)	0.499	MLE Sd (bias corrected)	0.215

Background Statistics Assuming Gamma Distribution

95% Wilson Hilferty (WH) Approx. Gamma UPL	0.913	90% Percentile	0.786
95% Hawkins Wixley (HW) Approx. Gamma UPL	0.926	95% Percentile	0.896
95% WH Approx. Gamma UTL with 95% Coverage	1.106	99% Percentile	1.128
95% HW Approx. Gamma UTL with 95% Coverage	1.136		
95% WH USL	1.197	95% HW USL	1.237

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.945	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.911	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.146	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.184	Data appear Lognormal at 5% Significance Level
Data appear Lognormal at 5% Significance Level		

Background Statistics assuming Lognormal Distribution

95% UTL with 95% Coverage	1.259	90% Percentile (z)	0.797
95% UPL (t)	0.978	95% Percentile (z)	0.931
95% USL	1.404	99% Percentile (z)	1.247

Nonparametric Distribution Free Background Statistics

Data appear Normal at 5% Significance Level

Nonparametric Upper Limits for Background Threshold Values

Order of Statistic, r	22	95% UTL with 95% Coverage	0.877
Approx, f used to compute achieved CC	1.158	imate Actual Confidence Coefficient achieved by UTL	0.676
		ximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	0.877	95% BCA Bootstrap UTL with 95% Coverage	0.877
95% UPL	0.87	90% Percentile	0.763
90% Chebyshev UPL	1.104	95% Percentile	0.829
95% Chebyshev UPL	1.378	99% Percentile	0.868
95% USL	0.877		

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations.

The use of USL tends to provide a balance between false positives and false negatives provided the data

represents a background data set and when many onsite observations need to be compared with the BTV.

Result (zinc)

General Statistics

Total Number of Observations	22	Number of Distinct Observations	22
Minimum	11.3	First Quartile	15.63
Second Largest	44.8	Median	23.05
Maximum	48.8	Third Quartile	34.6

Mean	26.1	SD	11.43
Coefficient of Variation	0.438	Skewness	0.442
Mean of logged Data	3.167	SD of logged Data	0.452
Critical Values for Backg	ound Three	shold Values (BTVs)	
Tolerance Factor K (For UTL)	2.349	d2max (for USL)	2.603
Norm		•	
Shapiro Wilk Test Statistic	0.923	Shaniro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.911	Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic	0.152	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.184	Data appear Normal at 5% Significance Level	
Data appear Norma	l at 5% Sig	nificance Level	
Background Statistics A	Assuming N	lormal Distribution	
95% UTL with 95% Coverage	52.96	90% Percentile (z)	40.75
95% UPL (t)	46.22	95% Percentile (z)	44.91
95% USL	55.86	99% Percentile (z)	52.7
0	- 00F T-		
		Andomon Dorling Commo COE Toot	
A-D Test Statistic	0.575	Anderson-Daning Gamma Gor Test	ance Leve
K-S Test Statistic	0.158	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.186)etected data appear Gamma Distributed at 5% Significa	ance Leve
Detected data appear Gamma	Distributed	at 5% Significance Level	
		•	
Gamn	na Statistic	S	
k hat (MLE)	5.416	k star (bias corrected MLE)	4.708
Theta hat (MLE)	4.819	Theta star (bias corrected MLE)	5.544
nu hat (MLE)	238.3	nu star (bias corrected)	207.1
MLE Mean (bias corrected)	26.1	MLE Sd (bias corrected)	12.03
Deckground Statistics	a sumina O	anna Distribution	
95% Wilson Hilferty (WH) Approx, Gamma LIPI		amma Distribution	12 21
95% Hawkins Wixley (HW) Approx. Gamma UPI	50 12	95% Percentile	48 51
95% WH Approx. Gamma UTL with 95% Coverage	60.61	99% Percentile	61.85
95% HW Approx. Gamma UTL with 95% Coverage	62.19		
95% WH USL	65.87	95% HW USL	68.01
Lognor	nal GOF To	est	
Shapiro Wilk Test Statistic	0.939	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.911	Data appear Lognormal at 5% Significance Leve	el
Lilliefors Test Statistic	0.166	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.184	Data appear Lognormal at 5% Significance Leve	el
Data appear Lognorm	al at 5% Si	gnificance Level	
Background Statistics as	sumina I o	normal Distribution	
95% UTL with 95% Coverage	68.61	90% Percentile (z)	42,35
95% UPL (t)	52.56	95% Percentile (z)	49.91
95% USL	76.94	99% Percentile (z)	67.91
Nonparametric Distributi	on Free Ba	ckground Statistics	
Data appear Norma	l at 5% Sig	nificance Level	
Nonparametric Upper Limits	for Backgr	ound Threshold Values	

Order of Statistic, r	22	95% UTL with 95% Coverage	48.8
Approx, f used to compute achieved CC	1.158	imate Actual Confidence Coefficient achieved by UTL	0.676
		ximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	48.8	95% BCA Bootstrap UTL with 95% Coverage	48.8
95% UPL	48.2	90% Percentile	41.07
90% Chebyshev UPL	61.17	95% Percentile	44.63
95% Chebyshev UPL	77.06	99% Percentile	47.96
95% USL	48.8		

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations.

The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV.

Ore-Body (13) ProUCL Outputs

Background Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation	ProUCL 5.110/21/2021 8:40:42 PM
From File	proucl_data_d.xls
Full Precision	OFF
Confidence Coefficient	95%
Coverage	95%
Different or Future K Observations	1
Number of Bootstrap Operations	2000

Result (antimony)

General Statistics

Total Number of Observations	12	Number of Distinct Observations	12
Minimum	0.226	First Quartile	2.086
Second Largest	20.3	Median	8.46
Maximum	33.7	Third Quartile	15.45
Mean	10.33	SD	10.01
Coefficient of Variation	0.969	Skewness	1.146
Mean of logged Data	1.553	SD of logged Data	1.647

Critical Values for Background Threshold Values (BTVs)

Tolerance Factor K (For UTL) 2.736

d2max (for USL) 2.285

Noi	mal GOF ⁻	lest			
Shapiro Wilk Test Statistic	0.894	Shapiro Wilk GOF Test			
5% Shapiro Wilk Critical Value	0.859	Data appear Normal at 5% Significance Level			
Lilliefors Test Statistic	0.156	Lilliefors GOF Test			
5% Lilliefors Critical Value	0.243	Data appear Normal at 5% Significance Level			
Data appear Normal at 5% Significance Level					

Background Statistics Assuming Normal Distribution					
95% UTL with	95% Coverage	37.73	90% Percentile (z)	23.16	
	95% UPL (t)	29.05	95% Percentile (z)	26.8	
	95% USL	33.21	99% Percentile (z)	33.62	

Gamma GOF Test

A-D Test Statistic	0.324	Anderson-Darling Gamma GOF Test				
5% A-D Critical Value	0.765	Detected data appear Gamma Distributed at 5% Significance Level				
K-S Test Statistic	0.146	Kolmogorov-Smirnov Gamma GOF Test				
5% K-S Critical Value	0.255	Detected data appear Gamma Distributed at 5% Significance Level				
Detected data appear Gamma Distributed at 5% Significance Level						

Gamma Statistics

k hat (MLE)	0.763	k star (bias corrected MLE)	0.628
Theta hat (MLE)	13.54	Theta star (bias corrected MLE)	16.45
nu hat (MLE)	18.32	nu star (bias corrected)	15.07
MLE Mean (bias corrected)	10.33	MLE Sd (bias corrected)	13.04
Background Statistics	s Assumir	ng Gamma Distribution	
95% Wilson Hilferty (WH) Approx. Gamma UPL	41.52	90% Percentile	26.6
95% Hawkins Wixley (HW) Approx. Gamma UPL	47.2	95% Percentile	36.57
95% WH Approx. Gamma UTL with 95% Coverage	73.67	99% Percentile	60.6
95% HW Approx. Gamma UTL with 95% Coverage	92.77		
95% WH USL	55.42	95% HW USL	66.2
Logn	ormal GO	F Test	
Shaniro Wilk Test Statistic	0.89	Shaniro Wilk Lognormal GOF Test	

Shapiro Wilk Test Statistic	0.89	Shapiro wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.859	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.194	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.243	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Background Statistics assuming Lognormal Distribution

95% UTL with 95% Coverage	427.5	90% Percentile (z)	38.98
95% UPL (t)	102.6	95% Percentile (z)	70.9
95% USL	203.4	99% Percentile (z)	217.8

Nonparametric Distribution Free Background Statistics Data appear Normal at 5% Significance Level

Nonparametric Upper Limits for Background Threshold Values

Order of Statistic, r	12	95% UTL with 95% Coverage	33.7
Approx, f used to compute achieved CC	0.632	imate Actual Confidence Coefficient achieved by UTL	0.46
		ximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	33.7	95% BCA Bootstrap UTL with 95% Coverage	33.7
95% UPL	33.7	90% Percentile	19.92
90% Chebyshev UPL	41.6	95% Percentile	26.33
95% Chebyshev UPL	55.76	99% Percentile	32.23
95% USL	33.7		

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations.

The use of USL tends to provide a balance between false positives and false negatives provided the data

represents a background data set and when many onsite observations need to be compared with the BTV.

Result (arsenic)

General Statistics

ons	Number of Distinct Observations	12	Total Number of Observations
rtile	First Quartile	31.3	Minimum
dian 1	Median	6440	Second Largest
rtile 3	Third Quartile	7100	Maximum
SD 2	SD	2398	Mean
ess	Skewness	1.025	Coefficient of Variation
)ata	SD of logged Data	6.918	Mean of logged Data

Critical Values for Background Threshold Values (BTVs)

Tolerance Factor K (For UTL) 2.736

d2max (for USL) 2.285

Normal GOF Test

Shapiro Wilk Test Statistic	0.859	Shapiro Wilk GOF Test		
5% Shapiro Wilk Critical Value	0.859	Data Not Normal at 5% Significance Level		
Lilliefors Test Statistic	0.237	Lilliefors GOF Test		
5% Lilliefors Critical Value	0.243	Data appear Normal at 5% Significance Level		
Data appear Approximate Normal at 5% Significance Level				

Background Statistics Assuming Normal Distribution

95% UTL with	95% Coverage	9122	90% Percentile (z)	5547
	95% UPL (t)	6992	95% Percentile (z)	6440
	95% USL	8013	99% Percentile (z)	8115

Gamma GOF Test

A-D Test Statistic	0.259	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.77	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.133	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.256	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	0.699	k star (bias corrected MLE)	0.58
Theta hat (MLE)	3430	Theta star (bias corrected MLE)	4135
nu hat (MLE)	16.78	nu star (bias corrected)	13.92
MLE Mean (bias corrected)	2398	MLE Sd (bias corrected)	3149

Background Statistics Assuming Gamma Distribution

95% Wilson Hilferty (WH) Approx.	Gamma UPL	9916	90% Percentile	6285
95% Hawkins Wixley (HW) Approx.	Gamma UPL	11301	95% Percentile	8736
95% WH Approx. Gamma UTL with 95	5% Coverage	17851	99% Percentile	14682
95% HW Approx. Gamma UTL with 95	5% Coverage	22638		
9	5% WH USL	13337	95% HW USL	16009

Lognormal GOF Test

Ore-Body (13) ProUCL Outputs

Shapiro Wilk Test Statistic	0.901	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.859	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.194	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.243	Data appear Lognormal at 5% Significance Level	
Data appear Lognormal at 5% Significance Level			

Background Statistics assuming Lognormal Distribution

95% UTL with 95% Coverage	119976	90% Percentile (z)	9467
95% UPL (t)	26413	95% Percentile (z)	17852
95% USL	54585	99% Percentile (z)	58676

Nonparametric Distribution Free Background Statistics

Data appear Approximate Normal at 5% Significance Level

Nonparametric Upper Limits for Background Threshold Values

Order of Statistic, r	12	95% UTL with 95% Coverage	7100
Approx, f used to compute achieved CC	0.632	imate Actual Confidence Coefficient achieved by UTL	0.46
		ximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	7100	95% BCA Bootstrap UTL with 95% Coverage	7100
95% UPL	7100	90% Percentile	6242
90% Chebyshev UPL	10071	95% Percentile	6737
95% Chebyshev UPL	13547	99% Percentile	7027
95% USL	7100		

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations.

The use of USL tends to provide a balance between false positives and false negatives provided the data

represents a background data set and when many onsite observations need to be compared with the BTV.

Conoral Statistics

Result (cadmium)

Ge	merar Stausuc	5	
Total Number of Observations	12	Number of Missing Observations	0
Number of Distinct Observations	11		
Number of Detects	10	Number of Non-Detects	2
Number of Distinct Detects	9	Number of Distinct Non-Detects	2
Minimum Detect	0.131	Minimum Non-Detect	0.0871
Maximum Detect	0.81	Maximum Non-Detect	0.0873
Variance Detected	0.045	Percent Non-Detects	16.67%
Mean Detected	0.477	SD Detected	0.212
Mean of Detected Logged Data	-0.851	SD of Detected Logged Data	0.535

Critical Values for Background Threshold Values (BTVs)

Tolerance Factor K (For UTL) 2.736

Normal GOE Test on Detects Only

Normal GO	Fleston	Detects Only
Shapiro Wilk Test Statistic	0.959	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.842	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.175	Lilliefors GOF Test
5% Lilliefors Critical Value	0.262	Detected Data appear Normal at 5% Significance Level

d2max (for USL)

2.285

Detected Data appear Normal at 5% Significance Level

Kaplan Meier (KM) Background Statistics Assuming Normal Distribution

KM Mean	0.412	KM SD	0.234
95% UTL95% Coverage	1.053	95% KM UPL (t)	0.85
90% KM Percentile (z)	0.712	95% KM Percentile (z)	0.797
99% KM Percentile (z)	0.957	95% KM USL	0.947

DL/2 Substitution Background Statistics Assuming Normal Distribution

0.405	SD	0.256
1.104	95% UPL (t)	0.882
0.732	95% Percentile (z)	0.825
0.999	95% USL	0.989
	0.405 1.104 0.732 0.999	0.405 SD 1.104 95% UPL (t) 0.732 95% Percentile (z) 0.999 95% USL

DL/2 is not a recommended method. DL/2 provided for comparisons and historical reasons

Gamma GOF Tests on Detected Observations Only

Ore-Body (13) ProUCL Outputs

A-D Test Statistic	0.285	Anderson-Darling GOF Test
5% A-D Critical Value	0.729	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.182	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.268	Detected data appear Gamma Distributed at 5% Significance Level
Detected data appear Gamma	a Distribu	ited at 5% Significance Level

Gamma Statistics on Detected Data Only

3.347	k star (bias corrected MLE)) 4.6	k hat (MLE)
0.142	Theta star (bias corrected MLE)) 0.1	Theta hat (MLE)
66.95	nu star (bias corrected)) 93.	nu hat (MLE)
) 0.4	MLE Mean (bias corrected)
13.62	95% Percentile of Chisquare (2kstar)) 0.2	MLE Sd (bias corrected)

Gamma F	ROS Statis	tics using Im	puted Non-Detects		
GROS may not be used when da	ita set has	> 50% NDs v	vith many tied observations at multiple DLs		
GROS may not be used when kstar of detects	s is small s	uch as <1.0,	especially when the sample size is small (e.g	g., <15-20)	
For such situations, GR	OS method	I may yield in	correct values of UCLs and BTVs		
This is es	pecially tru	e when the s	ample size is small.		
For gamma distributed detected data. BT	Vs and UC	Ls may be co	mputed using gamma distribution on KM est	imates	
, , , , , , , , , , , , , , , , , , ,	Minimum	0.087		Mean	0.412
	Jaximum	0.81		Median	0.397
·	SD	0.245		CV	0.594
k k		0.240	k star (bias correct		1 206
Thata k		2.333	Thete star (bias correct		0.000
		0.170			42.20
nu r	iat (IVILE)	50.03	nu star (blas co	priected)	43.30
MLE Mean (bias o	orrected)	0.412	MLE Sd (bias co	orrected)	0.307
95% Percentile of Chisquare	e (2kstar)	8.853	90% P	ercentile	0.821
95% F	Percentile	1.01	99% Pe	ercentile	1.431
The following statistics are	e computed	d using Gam	ma ROS Statistics on Imputed Data		
Upper Limits using Wi	ilson Hilfer	ty (WH) and	Hawkins Wixley (HW) Methods		
	WH	HW		WH	HW
95% Approx. Gamma UTL with 95% Coverage	1.615	1.78	95% Approx. Gamma UPL	1.081	1.138
95% Gamma USL	1.319	1.42			
Estimates	of Gamma	Parameters	using KM Estimates		
Μ	ean (KM)	0.412		SD (KM)	0.234
Varia	nce (KM)	0.0549	SE of Me	an (KM)	0.0713
k	hat (KM)	3.092	ks	star (KM)	2.375
nu hat (KM)		74 22	nus	star (KM)	57
theta	hat (KM)	0 133	thetas	tar (KM)	0 173
80% gamma percer	ntile (KM)	0.100	90% damma percen	tile (KM)	0.175
95% gamma percer	ntile (KM)	0.927	99% gamma percen	tile (KM)	1.27
The following statistics a	ro comput	d using gon	me distribution and KM astimates		
Linner Limite using M	leen Lilfer	tu using yan	Hewkine Wivley (HW) Methode		
Opper Limits using wi			nawkins wixley (nw) methods	14/1	1.11.47
	WH	HW		WH	HW
95% Approx. Gamma UTL with 95% Coverage	1.534	1.681	95% Approx. Gamma UPL	1.039	1.089
95% KM Gamma Percentile	0.931	0.966	95% Gamma USL	1.261	1.349
Lognormal	GOF Test	t on Detected	Observations Only		
Shapiro Wilk Tes	t Statistic	0.911	Shapiro Wilk GOF Te	st	
5% Shaniro Wilk Criti	cal Value	0.842	Detected Data appear Lognormal at 5%	Significan	ice Level
		0.010	Lilliefors GOF Test		
Lilliefors Tes	t Statistic	0.219			
Lilliefors Tes 5% Lilliefors Criti	cal Value	0.219	Detected Data appear Lognormal at 5%	Significan	ice Level
Lilliefors Tes 5% Lilliefors Criti Detected Dat	t Statistic cal Value a appear L	0.219 0.262 .ognormal at	Detected Data appear Lognormal at 5% 5% Significance Level	Significan	ice Level
Lilliefors Tes 5% Lilliefors Criti Detected Dat Background Lognormal ROS Stati	t Statistic cal Value a appear L stics Assur	0.219 0.262 .ognormal at ming Lognor	Detected Data appear Lognormal at 5% 5% Significance Level nal Distribution Using Imputed Non-Detects	Significan	ice Level
Lilliefors Tes 5% Lilliefors Criti Detected Dat Background Lognormal ROS Stati Mean in Origi	a appear L stics Assur nal Scale	0.219 0.262 ognormal at ming Lognor 0.419	Detected Data appear Lognormal at 5% 5% Significance Level nal Distribution Using Imputed Non-Detect: Mean in L	Significan s og Scale	-1.049
Lilliefors Tes 5% Lilliefors Criti Detected Dat Background Lognormal ROS Stati Mean in Origi SD in Origi	a appear L stics Assur nal Scale nal Scale	0.219 0.262 .ognormal at ming Lognor 0.419 0.235	Detected Data appear Lognormal at 5% 5% Significance Level nal Distribution Using Imputed Non-Detecta Mean in Lo SD in Lo	Significan S og Scale og Scale	-1.049 0.671
Lilliefors Tes 5% Lilliefors Criti Detected Dat Background Lognormal ROS Stati Mean in Origi SD in Origi 95% UTI 95% (t Statistic cal Value a appear L stics Assur nal Scale nal Scale	0.219 0.262 cognormal at ming Lognor 0.419 0.235 2 193	Detected Data appear Lognormal at 5% 5% Significance Level nal Distribution Using Imputed Non-Detecta Mean in Lo SD in Lo 95% BCA UTI 95% C	Significan s og Scale og Scale	-1.049 0.671 0.81
Lilliefors Tes 5% Lilliefors Criti Detected Dat Background Lognormal ROS Stati Mean in Origi SD in Origi 95% UTL95% (95% Bootstran (%) UTL95% (a appear L stics Assuinal Scale nal Scale Coverage	0.219 0.262 .ognormal at ming Lognor 0.419 0.235 2.193 0.81	Detected Data appear Lognormal at 5% 5% Significance Level nal Distribution Using Imputed Non-Detecta Mean in Lo SD in Lo 95% BCA UTL95% C محم	Significan s og Scale og Scale coverage	-1.049 0.671 0.81 1.226
Lilliefors Tes 5% Lilliefors Criti Detected Dat Background Lognormal ROS Stati Mean in Origi SD in Origi 95% UTL95% (95% Bootstrap (%) UTL95% (stics Assur nal Scale coverage coverage	0.219 0.262 .ognormal at 0.419 0.235 2.193 0.81 0.827	Detected Data appear Lognormal at 5% 5% Significance Level nal Distribution Using Imputed Non-Detecta Mean in Li SD in Li 95% BCA UTL95% C 95% BCA UTL95% C 95% BCA	Significan Sog Scale og Scale coverage 6 UPL (t) entile (7)	-1.049 0.671 0.81 1.226 1.055
Lilliefors Tes 5% Lilliefors Criti Detected Dat Background Lognormal ROS Statis Mean in Origi SD in Origi 95% UTL95% (95% Bootstrap (%) UTL95% (90% Perc	statistic cal Value a appear L stics Assur nal Scale nal Scale Coverage Coverage coverage contile (z)	0.219 0.262 .ognormal at ning Lognor 0.419 0.235 2.193 0.81 0.827 1.666	Detected Data appear Lognormal at 5% 5% Significance Level nal Distribution Using Imputed Non-Detects Mean in Li SD in Li 95% BCA UTL95% C 95% 95% Perc	Significan og Scale og Scale overage 6 UPL (t) entile (z)	-1.049 0.671 0.81 1.226 1.055

KM Mean of Logged Data-1.11695% KM UTL (Lognormal)95% Coverage2.566KM SD of Logged Data0.75295% KM UPL (Lognormal)1.337

95% KM Percentile Lognormal (z)	1.129	95% KM USL (Lognormal)	1.828
Background DL/2 Statistic	cs Assuming Lognom	nal Distribution	
Mean in Original Scale	0.405	Mean in Log Scale	-1.231
SD in Original Scale	0.256	SD in Log Scale	1.012
95% UTL95% Coverage	4.648	95% UPL (t)	1.934
90% Percentile (z)	1.067	95% Percentile (z)	1.542
99% Percentile (z)	3.071	95% USL	2.945
DL/2 is not a Recommended Method. DL	/2 provided for compa	arisons and historical reasons.	
Nonparametric Distrib	ution Free Backgrour	d Statistics	

Data appear to follow a Discernible Distribution at 5% Significance Level

Data appear to follow a Discernible Distribution at 5% organicance Level

Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects)
Nonparametric Upper Limits for BTVs(no distinction made between detects and nondetects)

0.81	95% UTL with95% Coverage	12	Order of Statistic, r
0.46	imate Actual Confidence Coefficient achieved by UTL	0.632	Approx, f used to compute achieved CC
0.81	95% UPL	59	Approximate Sample Size needed to achieve specified CC
1.475	95% KM Chebyshev UPL	0.81	95% USL

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data

represents a background data set and when many onsite observations need to be compared with the BTV.

Result (chromium)

General Statistics

Total Number of Observations	12	Number of Distinct Observations	12
Minimum	2.25	First Quartile	4.92
Second Largest	10.5	Median	6.65
Maximum	11.9	Third Quartile	8.515
Mean	6.905	SD	2.736
Coefficient of Variation	0.396	Skewness	0.242
Mean of logged Data	1.848	SD of logged Data	0.452

Critical Values for Background Threshold Values (BTVs)

Tolerance Factor K (For UTL) 2.736

d2max (for USL) 2.285

Nor	mal GOF [·]	Test .
Shapiro Wilk Test Statistic	0.984	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.859	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.0985	Lilliefors GOF Test
5% Lilliefors Critical Value	0.243	Data appear Normal at 5% Significance Level
Data appear Norm	nal at 5% S	Significance Level

Background Statistics Assuming Normal Distribution

95% UTL with	95% Coverage	14.39	90% Percentile (z)	10.41
	95% UPL (t)	12.02	95% Percentile (z)	11.4
	95% USL	13.16	99% Percentile (z)	13.27

Gamma GOF Test

A-D Test Statistic	0.167	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.732	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.104	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.246	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	6.132	k star (bias corrected MLE)	4.654
Theta hat (MLE)	1.126	Theta star (bias corrected MLE)	1.484
nu hat (MLE)	147.2	nu star (bias corrected)	111.7
MLE Mean (bias corrected)	6.905	MLE Sd (bias corrected)	3.201

Background Statistics Assuming Gamma Distribution

95% Wilson Hilferty (WH) Approx. Gamma UPL	13.32	90% Percentile	11.19
95% Hawkins Wixley (HW) Approx. Gamma UPL	13.6	95% Percentile	12.87

95% WH Approx. Gamma UTL with 95% Coverage	17.62	99% Percentile	16.43
95% HW Approx. Gamma UTL with 95% Coverage	18.39		
95% WH USL	15.28	95% HW USL	15.76
Logn	ormal GO	F Test	
Shapiro Wilk Test Statistic	0.947	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.859	Data appear Lognormal at 5% Significance Le	evel
Lilliefors Test Statistic	0.128	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.243	Data appear Lognormal at 5% Significance Le	evel
Data appear Lognormal at 5% Significance Level			
Packground Statistics		Lognormal Distribution	
05% LTL with 05% Coverage	21 00	Lognormal Distribution	11 24
95% OTE with 95% Coverage	21.00	90% Percentile (z)	12.26
95% 01 E (t)	17.84	90% Percentile (z)	18.50
33 / 03L	17.04		10.10
Nonparametric Distrib	ution Free	Background Statistics	
Data appear Norm	nal at 5%	Significance Level	
Nonparametric Upper Lim	its for Bad	ckground Threshold Values	
Order of Statistic, r	12	95% UTL with 95% Coverage	11.9
Approx, f used to compute achieved CC	0.632	imate Actual Confidence Coefficient achieved by UTL	0.46
		ximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	11.9	95% BCA Bootstrap UTL with 95% Coverage	11.9
95% UPL	11.9	90% Percentile	10.32
90% Chebyshev UPL	15.45	95% Percentile	11.13
95% Chebyshev UPL	19.32	99% Percentile	11.75
95% USL	11.9		
Note: The use of USL tends to yield a conservative estin	nate of B1	V especially when the sample size starts exceeding 20	
Therefore one may use USL to estimate a BTV only where	nen the da	ta set represents a background data set, free of outliers	
and consists of observations of	ollected fr	om clean unimpacted locations.	
The use of USL tends to provide a balance betw	ween false	positives and false negatives provided the data	

represents a background data set and when many onsite observations need to be compared with the BTV.

Result (copper)

General Statistics

12 Number of Distinct Observation:	12	Total Number of Observations
16.5 First Quartile	16	Minimum
633 Media	633	Second Largest
690 Third Quartile	690	Maximum
274.4 SI	274	Mean
0.813 Skewnes	0.8	Coefficient of Variation
5.219 SD of logged Data	5.2	Mean of logged Data
ground Threshold Values (BTVs)	kgrou	Critical Values for Bad
2.736 d2max (for USL	2.	Tolerance Factor K (For UTL)
12 Number of Distinct Observation 16.5 First Quartile 633 Media 690 Third Quartile 274.4 SI 0.813 Skewnes 5.219 SD of logged Date ground Threshold Values (BTVs) 2.736 d2max (for USL	12 16. 633 690 274. 0.3 5.2 5.2	al Number of Observations Minimum Second Largest Maximum Mean Coefficient of Variation Mean of logged Data Critical Values for Bar lerance Factor K (For UTL)

Normal GOF Test

Shapiro Wilk Test Statistic	0.892	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.859	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.192	Lilliefors GOF Test
5% Lilliefors Critical Value	0.243	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Background Statistics Assuming Normal Distribution

95% UTL with	95% Coverage	884.5	90% Percentile (z)	560.2
	95% UPL (t)	691.2	95% Percentile (z)	641.2
	95% USL	783.9	99% Percentile (z)	793.2

Gamma GOF Test

A-D Test Statistic	0.158	Anderson-Darling Gamma GOF Test		
5% A-D Critical Value	0.748	Detected data appear Gamma Distributed at 5% Significance Level		
K-S Test Statistic	0.104	Kolmogorov-Smirnov Gamma GOF Test		
5% K-S Critical Value	0.25	Detected data appear Gamma Distributed at 5% Significance Level		
Detected data appear Gamma Distributed at 5% Significance Level				

Ore-Body (13) ProUCL Outputs

Gamma Statistics

k hat (MLE)	1.408	k star (bias corrected MLE)	1.112
Theta hat (MLE)	194.8	Theta star (bias corrected MLE)	246.8
nu hat (MLE)	33.8	nu star (bias corrected)	26.68
MLE Mean (bias corrected)	274.4	MLE Sd (bias corrected)	260.2
Background Statistic	cs Assumi	ng Gamma Distribution	
95% Wilson Hilferty (WH) Approx. Gamma UPL	864.5	90% Percentile	615.5
95% Hawkins Wixley (HW) Approx. Gamma UPL	926	95% Percentile	791.9
95% WH Approx. Gamma UTL with $~95%$ Coverage	1390	99% Percentile	1199
95% HW Approx. Gamma UTL with $~95%$ Coverage	1588		
95% WH USL	1096	95% HW USL	1210
Logi	normal GC	0F Test	
Shapiro Wilk Test Statistic	0.939	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.859	Data appear Lognormal at 5% Significance L	evel
Lilliefors Test Statistic	0.117	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.243	Data appear Lognormal at 5% Significance L	evel
Data appear Logn	ormal at 5	% Significance Level	
Background Statistics	s assuming	J Lognormal Distribution	
95% UTL with 95% Coverage	3353	90% Percentile (z)	718.2
95% UPL (t)	1339	95% Percentile (z)	1055
95% USL	2079	99% Percentile (z)	2172
Nonparametric Distribution Free Background Statistics			
Data appear Nor	mal at 5%	Significance Level	

Nonparametric Upper Limits for Background Threshold Values

12	95% UTL with 95% Coverage	690
0.632	imate Actual Confidence Coefficient achieved by UTL	0.46
	ximate Sample Size needed to achieve specified CC	59
690	95% BCA Bootstrap UTL with 95% Coverage	690
690	90% Percentile	619.5
970.7	95% Percentile	658.7
1286	99% Percentile	683.7
690		
	12 0.632 690 690 970.7 1286 690	12 95% UTL with 95% Coverage 0.632 imate Actual Confidence Coefficient achieved by UTL xximate Sample Size needed to achieve specified CC 690 95% BCA Bootstrap UTL with 95% Coverage 690 90% Percentile 970.7 95% Percentile 1286 99% Percentile 690 99% Percentile

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data

represents a background data set and when many onsite observations need to be compared with the BTV.

Result (lead)

General Statistics

Total Number of Observations	12	Number of Distinct Observations	12
Minimum	57.5	First Quartile	3265
Second Largest	24900	Median	6165
Maximum	27000	Third Quartile	10258
Mean	8820	SD	8759
Coefficient of Variation	0.993	Skewness	1.398
Mean of logged Data	8.423	SD of logged Data	1.612

Critical Values for Background Threshold Values (BTVs)

Tolerance Factor K (For UTL) 2.736

d2max (for USL) 2.285

Normal GOF Test

Shapiro Wilk Test Statistic	0.815	Shapiro Wilk GOF Test		
5% Shapiro Wilk Critical Value	0.859	Data Not Normal at 5% Significance Level		
Lilliefors Test Statistic	0.223	Lilliefors GOF Test		
5% Lilliefors Critical Value	0.243	Data appear Normal at 5% Significance Level		
Data appear Approximate Normal at 5% Significance Level				

Background Statistics Assuming Normal Distribution

Ore-Bod	y (13) ProU(CL Outputs	
95% UTL with 95% Coverage	32785	90% Percentile (z)	20045
95% UPL (t)	25193	95% Percentile (z)	23228
95% USL	28834	99% Percentile (z)	29197
0		Test	
		Lest Anderson Darling Commo COE Test	
A-D Test Statistic	0.292	Anderson-Daning Gamma GOF Test	ificance Loval
5 % A-D Childal Value	0.701	Kolmogorov Smirnov Commo COE Tor	
5% K S Critical Value	0.120	Collinggolov-Similiov Gamma Gor Tes	si vificance Laval
Detected data appear Gam	0.200	ited at 5% Significance Level	
Delected data appear Gan	ina Distribu		
G	amma Statis	stics	
k hat (MLE)	0.885	k star (bias corrected MLE)	0.719
Theta hat (MLE)	9966	Theta star (bias corrected MLE)	12262
nu hat (MLE)	21.24	nu star (bias corrected)	17.26
MLE Mean (bias corrected)	8820	MLE Sd (bias corrected)	10399
Background Statisti	cs Assumin	g Gamma Distribution	
95% Wilson Hilferty (WH) Approx. Gamma UPL	32586	90% Percentile	21998
95% Hawkins Wixley (HW) Approx. Gamma UPL	36750	95% Percentile	29727
95% WH Approx. Gamma UTL with 95% Coverage	55903	99% Percentile	48137
95% HW Approx. Gamma UTL with 95% Coverage	69169		
95% WH USL	42729	95% HW USL	50398
		- -	
LOg Shanira Wilk Tost Statistia		- Test Shanira Wilk Lognarmal GOE Test	
Shapiro Wilk Test Statistic	0.024	Shapiro Wilk Lognormal of E% Significance Lo	
5% Shapiro Wilk Chucal Value	0.859	Data Not Lognormal at 5% Significance Le	ever
Enlietors Test Statistic	0.202	Lilleiors Lognormal at 5% Significance	aval
Data appear Approximat	0.243	al at 5% Significance Level	Level
	e Loginomia		
Background Statistic	s assuming	Lognormal Distribution	
95% UTL with 95% Coverage	374590	90% Percentile (z)	35912
95% UPL (t)	92616	95% Percentile (z)	64506
95% USL	181034	99% Percentile (z)	193527
Nonparametric Distri	bution Free	Background Statistics	
Data appear Approxim	ate Normal	at 5% Significance Level	
Nonparametric Upper Li	mits for Bac	karound Threshold Values	
Order of Statistic, r	12	95% UTL with 95% Coverage	27000
Approx, f used to compute achieved CC	0.632	imate Actual Confidence Coefficient achieved by UTL	0.46
	0.002	eximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	27000	95% BCA Bootstrap UTL with 95% Coverage	27000
95% UPI	27000	90% Percentile	23690
90% Chebyshev UPI	36171	95% Percentile	25845
95% Chebyshev UPI	48560	99% Percentile	26769
95% USI	27000		20/00
93 % 03E	27000		
95% UPL 90% Chebyshev UPL 95% Chebyshev UPL 95% USL Note: The use of USL tends to yield a conservative es	36171 48560 27000	90% Percentile 95% Percentile 99% Percentile V, especially when the sample size starts exceeding 20	25845 26769

Note: Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers

and consists of observations collected from clean unimpacted locations.

The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV.

Result (manganese)

General Statistics

Total Number of Observations 12 Minimum 765 Second Largest 313000 Maximum 341000 Mean 181172 Coefficient of Variation 0.64 Mean of logged Data 11.48 Number of Distinct Observations 11 First Quartile 95375 Median 205500 Third Quartile 256250 SD 115958 Skewness -0.383 SD of logged Data 1.773

Critical Values for Background Threshold Values (BTVs)

Ore-Body (13) ProUCL Outputs

Normal GOE Test

Tolerance Factor K (For UTL) 2.736

11011		1630	
Shapiro Wilk Test Statistic	0.916	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.859	Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic	0.207	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.243	Data appear Normal at 5% Significance Level	
Data appear Normal at 5% Significance Level			

Background Statistics Assuming Normal Distribution

95% UTL with 95% Coverage	498434	90% Percentile (z)	329779
95% UPL (t)	397923	95% Percentile (z)	371907
95% USL	446132	99% Percentile (z)	450932

Gamma GOF Test

Test Statistic 1.13 Anderson-Darling Gamr	na GOF Test
ritical Value 0.759 Data Not Gamma Distributed at 5	% Significance Level
est Statistic 0.326 Kolmogorov-Smirnov Gan	nma GOF Test
ritical Value 0.253 Data Not Gamma Distributed at 5	% Significance Level

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	0.933	k star (bias corrected MLE)	0.756
Theta hat (MLE)	194092	Theta star (bias corrected MLE)	239763
nu hat (MLE)	22.4	nu star (bias corrected)	18.14
MLE Mean (bias corrected)	181172	MLE Sd (bias corrected)	208419

Background Statistics Assuming Gamma Distribution

95% Wilson Hilferty (WH) Approx. Gamma UPL 660147	90% Percentile 446608
95% Hawkins Wixley (HW) Approx. Gamma UPL 786175	95% Percentile 599897
95% WH Approx. Gamma UTL with 95% Coverage 1110566	99% Percentile 963543
95% HW Approx. Gamma UTL with 95% Coverage 1468252	
95% WH USL 856810	95% HW USL 1073809

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.699	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.859	Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.317	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.243	Data Not Lognormal at 5% Significance Level	
Data Not Lognormal at 5% Significance Level			

Background	Statistics	assuming	Lognormal	Distribution	
		•			

95% UTL with 95% Coverage	12419193	90% Percentile (z)	942182
95% UPL (t)	2670853	95% Percentile (z)	1794261
95% USL	5581833	99% Percentile (z)	6006920

Nonparametric Distribution Free Background Statistics

Data appear Normal at 5% Significance Level

Nonparametric Upper Limits for Background Threshold Values

Order of Statistic, r	12	95% UTL with	95% Coverage	341000
Approx, f used to compute achieved CC	0.632	imate Actual Confidence Coefficient a	chieved by UTL	0.46
		ximate Sample Size needed to achie	ve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	341000	95% BCA Bootstrap UTL with	95% Coverage	341000
95% UPL	341000		90% Percentile	311600
90% Chebyshev UPL	543252		95% Percentile	325600
95% Chebyshev UPL	707262		99% Percentile	337920
95% USL	341000			

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations.

The use of USL tends to provide a balance between false positives and false negatives provided the data

represents a background data set and when many onsite observations need to be compared with the BTV.

Result (selenium)

General Statistics

stics			
Total Number of Observations	12	Number of Distinct Observations	12
Minimum	0.264	First Quartile	0.345
Second Largest	0.919	Median	0.432
Maximum	1.07	Third Quartile	0.514
Mean	0.504	SD	0.252
Coefficient of Variation	0.5	Skewness	1.511
Mean of logged Data	-0.78	SD of logged Data	0.432
Critical Values for Bac	karound T	hreshold Values (RTVs)	
Tolerance Factor K (For UTL)	2.736	d2max (for USL)	2.285
No Shapiro Wilk Test Statistic	0.81	Test Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.859	Data Not Normal at 5% Significance Level	1
Lilliefors Test Statistic	0.297	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.243	Data Not Normal at 5% Significance Level	1
Data Not Norm	al at 5% S	ignificance Level	
De skaround Otstisti			
		ig Normal Distribution	0.000
95% UTL With 95% Coverage	1.192	90% Percentile (z)	0.826
95% OPL (I)	0.974	95% Percentule (z)	0.917
95% USL	1.078	99% Percentile (z)	1.089
Ga	mma GOF	Test	
A-D Test Statistic	0.607	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.732	Detected data appear Gamma Distributed at 5% Signif	icance Level
K-S Test Statistic	0.249	Kolmogorov-Smirnov Gamma GOF Test	:
5% K-S Critical Value	0.246	Data Not Gamma Distributed at 5% Significance	Level
Detected data follow Appr. Ga	mma Distr	bution at 5% Significance Level	
Ga	mma Stati	stics	
k bat (MLF)	5 497	k star (bias corrected MLE)	4 179
Theta hat (MLE)	0.0916	Theta star (bias corrected MLE)	0.12
nu hat (MLE)	131.9	nu star (bias corrected)	100.3
MLE Mean (bias corrected)	0.504	MLE Sd (bias corrected)	0.246
Background Statistic	e Accumin	a Gamma Distribution	
95% Wilson Hilferty (WH) Approx, Gamma LIPI	0 000	90% Percentile	0.834
95% Wilson Fillery (WH) Approx. Gamma UP	1.005	95% Percentile	0.065
95% WH Approx, Gamma LITL with 95% Coverage	1 3 3 8	90% Percentile	1 245
95% HW Approx. Gamma LITL with 95% Coverage	1 360		1.240
95% WH USL	1.153	95% HW USL	1.169
	ormal GO	F 18SI	
Snapiro Wilk Test Statistic	0.919	Snapiro Wilk Lognormal GOF Test	
5% Snapiro Wilk Critical Value	0.859	Data appear Lognormal at 5% Significance Lo	evei
Eilliefors Test Statistic	0.219	Data annear Lagnermel at E% Significance L	aval
Data appear Logn	0.243 ormal at 59	6 Significance Level	evel
		-	
Background Statistics	assuming	Lognormal Distribution	0 798
	1 028	95% recentile (z) 95% Percentile (z)	0.730
95% USL	1.231	99% Percentile (z)	1.253
Nonparametric Distrit	oution Free	Background Statistics	
Data appear Approximate Gai	nma Distri	DUTION AT 5% SIGNIFICANCE LEVEI	
Nonparametric Upper Lin	nits for Bac	kground Threshold Values	
Order of Statistic, r	12	95% UTL with 95% Coverage	1.07
Approx, f used to compute achieved CC	0.632	imate Actual Confidence Coefficient achieved by UTL	0.46
		ximate Sample Size needed to achieve specified CC	59

95% Percentile Bootstrap UTL with 95% Coverage 1.07 95% BCA Bootstrap UTL with 95% Coverage 1.07 95% BCA Bootstrap UTL with 95% Coverage 1.07 95% UPL 1.07 90% Percentile 0.891 90% Chebyshev UPL 1.289 95% Percentile 0.987 95% Chebyshev UPL 1.645 99% Percentile 1.053
Ore-Body (13) ProUCL Outputs

95% USL 1.07

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV.

Result (zinc)

General Statistics

Total Number of Observations	12	Number of Distinct Observations	12
Minimum	109	First Quartile	233
Second Largest	1190	Median	522
Maximum	1310	Third Quartile	834.3
Mean	578.4	SD	407
Coefficient of Variation	0.704	Skewness	0.585
Mean of logged Data	6.082	SD of logged Data	0.832

Critical Values for Background Threshold Values (BTVs)

Tolerance Factor K (For UTL)	2.736	d2max (for USL)	2.285

Normal GOF Test

Shapiro Wilk Test Statistic	0.916	Shapiro Wilk GOF Test		
5% Shapiro Wilk Critical Value	0.859	Data appear Normal at 5% Significance Level		
Lilliefors Test Statistic	0.171	Lilliefors GOF Test		
5% Lilliefors Critical Value	0.243	Data appear Normal at 5% Significance Level		
Data appear Normal at 5% Significance Level				

Background Statistics Assuming Normal Distribution

95% UTL with 95% Coverag	e 1692	90% Percentile (z)	1100
95% UPL (t) 1339	95% Percentile (z)	1248
95% USI	1508	99% Percentile (z)	1525

Gamma GOF Test

A-D Test Statistic	0.282	Anderson-Darling Gamma GOF Test		
5% A-D Critical Value	0.742	Detected data appear Gamma Distributed at 5% Significance Level		
K-S Test Statistic	0.154	Kolmogorov-Smirnov Gamma GOF Test		
5% K-S Critical Value	0.249	Detected data appear Gamma Distributed at 5% Significance Level		
Detected data appear Gamma Distributed at 5% Significance Level				

Gamma Statistics

k hat (MLE)	1.944	k star (bias corrected MLE)	1.513			
Theta hat (MLE)	297.6	Theta star (bias corrected MLE)	382.2			
nu hat (MLE)	46.65	nu star (bias corrected)	36.32			
MLE Mean (bias corrected)	578.4	MLE Sd (bias corrected)	470.2			
Background Statistics Assuming Gamma Distribution						
95% Wilson Hilferty (WH) Approx. Gamma UPL	1621	90% Percentile	1203			
95% Hawkins Wixley (HW) Approx. Gamma UPL	1697	95% Percentile	1502			
95% WH Approx. Gamma UTL with 95% Coverage	2488	99% Percentile	2178			
95% HW Approx. Gamma UTL with 95% Coverage	2735					
95% WH USL	2006	95% HW USL	2148			

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.942	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.859	Data appear Lognormal at 5% Significance
Lilliefors Test Statistic	0.18	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.243	Data appear Lognormal at 5% Significance

ar Lognormal at 5% Significance Level illiefors Lognormal GOF Test ar Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Background Statistics assuming Lognormal Distribution

95% UTL with	95% Coverage	4261	90% Percentile (z)	1271
	95% UPL (t)	2072	95% Percentile (z)	1719
	95% USL	2928	99% Percentile (z)	3031

Nonparametric Distribution Free Background Statistics

Ore-Body (13) ProUCL Outputs

Data appear Normal at 5% Significance Level

Nonparametric Upper Limits for Background Threshold Values

Order of Statistic, r	12	95% UTL with 95% Coverag	e 1310
Approx, f used to compute achieved CC	0.632	imate Actual Confidence Coefficient achieved by UT	0.46
		ximate Sample Size needed to achieve specified Co	59
95% Percentile Bootstrap UTL with 95% Coverage	1310	95% BCA Bootstrap UTL with 95% Coverag	e 1310
95% UPL	1310	90% Percentil	ə 1158
90% Chebyshev UPL	1849	95% Percentil	e 1244
95% Chebyshev UPL	2425	99% Percentil	ə 1297
95% USL	1310		

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations.

The use of USL tends to provide a balance between false positives and false negatives provided the data

represents a background data set and when many onsite observations need to be compared with the BTV.

APPENDIX E

Empirical Distribution Functions

